Stochastic smoothed profile method for modeling random roughness in flow problems
We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2013-08, Vol.263, p.99-112 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 99 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 263 |
creator | Zayernouri, Mohsen Park, Sang-Woo Tartakovsky, Daniel M. Karniadakis, George Em |
description | We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid. This procedure introduces a stochastic force into the Navier–Stokes equations, and modifies the boundary conditions at the fluid–solid interface. We employ a high-order semi-implicit splitting scheme implemented in the context of a spectral/hp element method in order to discretize the physical domain. The stochastic roughness is treated as a second-order autoregressive process that is represented by a Karhunen–Loève expansion. A multi-element probabilistic collocation method is employed to solve the resulting stochastic Navier–Stokes equations. This method is applied to simulate external flow past a rough cylinder and internal Stokes flow between two parallel plates with random wall roughness. In the first problem, we develop an analytical solution for the asymptotic behavior of the lift coefficient CL to verify the results. In the second test-case, we compare the mean and the standard deviation of the velocity field to those obtained from a different method called stochastic mapping approach (SMA), developed by Tartakovsky and Xiu (2006). |
doi_str_mv | 10.1016/j.cma.2013.05.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671629360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782513001242</els_id><sourcerecordid>1448752697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4c0f329f05d3d2a7866c340a0760b8059d593994b0abdd7a65fc85a533724bd63</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwAey8ZJMwtuNHxApVvKRKCAFry7Gd1lUSFzsF8fekKmuYzWzuuaM5CF0SKAkQcb0pbW9KCoSVwEsAeYRmRMm6oISpYzQDqHghFeWn6CznDUyjCJ2hl9cx2rXJY7A49zGOa-_wNsU2dB73flxHh9uYcB-d78KwwskMLvY4xd1qPficcRhw28WvPdR0vs_n6KQ1XfYXv3uO3u_v3haPxfL54WlxuywsE2wsKgsto3UL3DFHjVRCWFaBASmgUcBrx2tW11UDpnFOGsFbq7jhjElaNU6wObo69E6HP3Y-j7oP2fquM4OPu6yJkETQmgn4P1pVSnIqajlFySFqU8w5-VZvU-hN-tYE9N603ujJtN6b1sD1ZHpibg6Mn979DD7pbIMfrHcheTtqF8Mf9A8c04YE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448752697</pqid></control><display><type>article</type><title>Stochastic smoothed profile method for modeling random roughness in flow problems</title><source>Elsevier ScienceDirect Journals</source><creator>Zayernouri, Mohsen ; Park, Sang-Woo ; Tartakovsky, Daniel M. ; Karniadakis, George Em</creator><creatorcontrib>Zayernouri, Mohsen ; Park, Sang-Woo ; Tartakovsky, Daniel M. ; Karniadakis, George Em</creatorcontrib><description>We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid. This procedure introduces a stochastic force into the Navier–Stokes equations, and modifies the boundary conditions at the fluid–solid interface. We employ a high-order semi-implicit splitting scheme implemented in the context of a spectral/hp element method in order to discretize the physical domain. The stochastic roughness is treated as a second-order autoregressive process that is represented by a Karhunen–Loève expansion. A multi-element probabilistic collocation method is employed to solve the resulting stochastic Navier–Stokes equations. This method is applied to simulate external flow past a rough cylinder and internal Stokes flow between two parallel plates with random wall roughness. In the first problem, we develop an analytical solution for the asymptotic behavior of the lift coefficient CL to verify the results. In the second test-case, we compare the mean and the standard deviation of the velocity field to those obtained from a different method called stochastic mapping approach (SMA), developed by Tartakovsky and Xiu (2006).</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2013.05.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Cylinders ; Incompressible flows ; Karhunen–Loève expansion ; Mathematical analysis ; Mathematical models ; Multi-element PCM ; Navier-Stokes equations ; Roughness ; Stochastic mapping technique ; Stochasticity ; Wall roughness ; Walls</subject><ispartof>Computer methods in applied mechanics and engineering, 2013-08, Vol.263, p.99-112</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4c0f329f05d3d2a7866c340a0760b8059d593994b0abdd7a65fc85a533724bd63</citedby><cites>FETCH-LOGICAL-c363t-4c0f329f05d3d2a7866c340a0760b8059d593994b0abdd7a65fc85a533724bd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2013.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Zayernouri, Mohsen</creatorcontrib><creatorcontrib>Park, Sang-Woo</creatorcontrib><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><title>Stochastic smoothed profile method for modeling random roughness in flow problems</title><title>Computer methods in applied mechanics and engineering</title><description>We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid. This procedure introduces a stochastic force into the Navier–Stokes equations, and modifies the boundary conditions at the fluid–solid interface. We employ a high-order semi-implicit splitting scheme implemented in the context of a spectral/hp element method in order to discretize the physical domain. The stochastic roughness is treated as a second-order autoregressive process that is represented by a Karhunen–Loève expansion. A multi-element probabilistic collocation method is employed to solve the resulting stochastic Navier–Stokes equations. This method is applied to simulate external flow past a rough cylinder and internal Stokes flow between two parallel plates with random wall roughness. In the first problem, we develop an analytical solution for the asymptotic behavior of the lift coefficient CL to verify the results. In the second test-case, we compare the mean and the standard deviation of the velocity field to those obtained from a different method called stochastic mapping approach (SMA), developed by Tartakovsky and Xiu (2006).</description><subject>Computer simulation</subject><subject>Cylinders</subject><subject>Incompressible flows</subject><subject>Karhunen–Loève expansion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multi-element PCM</subject><subject>Navier-Stokes equations</subject><subject>Roughness</subject><subject>Stochastic mapping technique</subject><subject>Stochasticity</subject><subject>Wall roughness</subject><subject>Walls</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwAey8ZJMwtuNHxApVvKRKCAFry7Gd1lUSFzsF8fekKmuYzWzuuaM5CF0SKAkQcb0pbW9KCoSVwEsAeYRmRMm6oISpYzQDqHghFeWn6CznDUyjCJ2hl9cx2rXJY7A49zGOa-_wNsU2dB73flxHh9uYcB-d78KwwskMLvY4xd1qPficcRhw28WvPdR0vs_n6KQ1XfYXv3uO3u_v3haPxfL54WlxuywsE2wsKgsto3UL3DFHjVRCWFaBASmgUcBrx2tW11UDpnFOGsFbq7jhjElaNU6wObo69E6HP3Y-j7oP2fquM4OPu6yJkETQmgn4P1pVSnIqajlFySFqU8w5-VZvU-hN-tYE9N603ujJtN6b1sD1ZHpibg6Mn979DD7pbIMfrHcheTtqF8Mf9A8c04YE</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Zayernouri, Mohsen</creator><creator>Park, Sang-Woo</creator><creator>Tartakovsky, Daniel M.</creator><creator>Karniadakis, George Em</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130815</creationdate><title>Stochastic smoothed profile method for modeling random roughness in flow problems</title><author>Zayernouri, Mohsen ; Park, Sang-Woo ; Tartakovsky, Daniel M. ; Karniadakis, George Em</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4c0f329f05d3d2a7866c340a0760b8059d593994b0abdd7a65fc85a533724bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Cylinders</topic><topic>Incompressible flows</topic><topic>Karhunen–Loève expansion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multi-element PCM</topic><topic>Navier-Stokes equations</topic><topic>Roughness</topic><topic>Stochastic mapping technique</topic><topic>Stochasticity</topic><topic>Wall roughness</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zayernouri, Mohsen</creatorcontrib><creatorcontrib>Park, Sang-Woo</creatorcontrib><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zayernouri, Mohsen</au><au>Park, Sang-Woo</au><au>Tartakovsky, Daniel M.</au><au>Karniadakis, George Em</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic smoothed profile method for modeling random roughness in flow problems</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2013-08-15</date><risdate>2013</risdate><volume>263</volume><spage>99</spage><epage>112</epage><pages>99-112</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid. This procedure introduces a stochastic force into the Navier–Stokes equations, and modifies the boundary conditions at the fluid–solid interface. We employ a high-order semi-implicit splitting scheme implemented in the context of a spectral/hp element method in order to discretize the physical domain. The stochastic roughness is treated as a second-order autoregressive process that is represented by a Karhunen–Loève expansion. A multi-element probabilistic collocation method is employed to solve the resulting stochastic Navier–Stokes equations. This method is applied to simulate external flow past a rough cylinder and internal Stokes flow between two parallel plates with random wall roughness. In the first problem, we develop an analytical solution for the asymptotic behavior of the lift coefficient CL to verify the results. In the second test-case, we compare the mean and the standard deviation of the velocity field to those obtained from a different method called stochastic mapping approach (SMA), developed by Tartakovsky and Xiu (2006).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2013.05.007</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2013-08, Vol.263, p.99-112 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671629360 |
source | Elsevier ScienceDirect Journals |
subjects | Computer simulation Cylinders Incompressible flows Karhunen–Loève expansion Mathematical analysis Mathematical models Multi-element PCM Navier-Stokes equations Roughness Stochastic mapping technique Stochasticity Wall roughness Walls |
title | Stochastic smoothed profile method for modeling random roughness in flow problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20smoothed%20profile%20method%20for%20modeling%20random%20roughness%20in%20flow%20problems&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Zayernouri,%20Mohsen&rft.date=2013-08-15&rft.volume=263&rft.spage=99&rft.epage=112&rft.pages=99-112&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2013.05.007&rft_dat=%3Cproquest_cross%3E1448752697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448752697&rft_id=info:pmid/&rft_els_id=S0045782513001242&rfr_iscdi=true |