Stochastic smoothed profile method for modeling random roughness in flow problems

We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2013-08, Vol.263, p.99-112
Hauptverfasser: Zayernouri, Mohsen, Park, Sang-Woo, Tartakovsky, Daniel M., Karniadakis, George Em
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue
container_start_page 99
container_title Computer methods in applied mechanics and engineering
container_volume 263
creator Zayernouri, Mohsen
Park, Sang-Woo
Tartakovsky, Daniel M.
Karniadakis, George Em
description We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid. This procedure introduces a stochastic force into the Navier–Stokes equations, and modifies the boundary conditions at the fluid–solid interface. We employ a high-order semi-implicit splitting scheme implemented in the context of a spectral/hp element method in order to discretize the physical domain. The stochastic roughness is treated as a second-order autoregressive process that is represented by a Karhunen–Loève expansion. A multi-element probabilistic collocation method is employed to solve the resulting stochastic Navier–Stokes equations. This method is applied to simulate external flow past a rough cylinder and internal Stokes flow between two parallel plates with random wall roughness. In the first problem, we develop an analytical solution for the asymptotic behavior of the lift coefficient CL to verify the results. In the second test-case, we compare the mean and the standard deviation of the velocity field to those obtained from a different method called stochastic mapping approach (SMA), developed by Tartakovsky and Xiu (2006).
doi_str_mv 10.1016/j.cma.2013.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671629360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782513001242</els_id><sourcerecordid>1448752697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4c0f329f05d3d2a7866c340a0760b8059d593994b0abdd7a65fc85a533724bd63</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwAey8ZJMwtuNHxApVvKRKCAFry7Gd1lUSFzsF8fekKmuYzWzuuaM5CF0SKAkQcb0pbW9KCoSVwEsAeYRmRMm6oISpYzQDqHghFeWn6CznDUyjCJ2hl9cx2rXJY7A49zGOa-_wNsU2dB73flxHh9uYcB-d78KwwskMLvY4xd1qPficcRhw28WvPdR0vs_n6KQ1XfYXv3uO3u_v3haPxfL54WlxuywsE2wsKgsto3UL3DFHjVRCWFaBASmgUcBrx2tW11UDpnFOGsFbq7jhjElaNU6wObo69E6HP3Y-j7oP2fquM4OPu6yJkETQmgn4P1pVSnIqajlFySFqU8w5-VZvU-hN-tYE9N603ujJtN6b1sD1ZHpibg6Mn979DD7pbIMfrHcheTtqF8Mf9A8c04YE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448752697</pqid></control><display><type>article</type><title>Stochastic smoothed profile method for modeling random roughness in flow problems</title><source>Elsevier ScienceDirect Journals</source><creator>Zayernouri, Mohsen ; Park, Sang-Woo ; Tartakovsky, Daniel M. ; Karniadakis, George Em</creator><creatorcontrib>Zayernouri, Mohsen ; Park, Sang-Woo ; Tartakovsky, Daniel M. ; Karniadakis, George Em</creatorcontrib><description>We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid. This procedure introduces a stochastic force into the Navier–Stokes equations, and modifies the boundary conditions at the fluid–solid interface. We employ a high-order semi-implicit splitting scheme implemented in the context of a spectral/hp element method in order to discretize the physical domain. The stochastic roughness is treated as a second-order autoregressive process that is represented by a Karhunen–Loève expansion. A multi-element probabilistic collocation method is employed to solve the resulting stochastic Navier–Stokes equations. This method is applied to simulate external flow past a rough cylinder and internal Stokes flow between two parallel plates with random wall roughness. In the first problem, we develop an analytical solution for the asymptotic behavior of the lift coefficient CL to verify the results. In the second test-case, we compare the mean and the standard deviation of the velocity field to those obtained from a different method called stochastic mapping approach (SMA), developed by Tartakovsky and Xiu (2006).</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2013.05.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Cylinders ; Incompressible flows ; Karhunen–Loève expansion ; Mathematical analysis ; Mathematical models ; Multi-element PCM ; Navier-Stokes equations ; Roughness ; Stochastic mapping technique ; Stochasticity ; Wall roughness ; Walls</subject><ispartof>Computer methods in applied mechanics and engineering, 2013-08, Vol.263, p.99-112</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4c0f329f05d3d2a7866c340a0760b8059d593994b0abdd7a65fc85a533724bd63</citedby><cites>FETCH-LOGICAL-c363t-4c0f329f05d3d2a7866c340a0760b8059d593994b0abdd7a65fc85a533724bd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2013.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Zayernouri, Mohsen</creatorcontrib><creatorcontrib>Park, Sang-Woo</creatorcontrib><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><title>Stochastic smoothed profile method for modeling random roughness in flow problems</title><title>Computer methods in applied mechanics and engineering</title><description>We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid. This procedure introduces a stochastic force into the Navier–Stokes equations, and modifies the boundary conditions at the fluid–solid interface. We employ a high-order semi-implicit splitting scheme implemented in the context of a spectral/hp element method in order to discretize the physical domain. The stochastic roughness is treated as a second-order autoregressive process that is represented by a Karhunen–Loève expansion. A multi-element probabilistic collocation method is employed to solve the resulting stochastic Navier–Stokes equations. This method is applied to simulate external flow past a rough cylinder and internal Stokes flow between two parallel plates with random wall roughness. In the first problem, we develop an analytical solution for the asymptotic behavior of the lift coefficient CL to verify the results. In the second test-case, we compare the mean and the standard deviation of the velocity field to those obtained from a different method called stochastic mapping approach (SMA), developed by Tartakovsky and Xiu (2006).</description><subject>Computer simulation</subject><subject>Cylinders</subject><subject>Incompressible flows</subject><subject>Karhunen–Loève expansion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multi-element PCM</subject><subject>Navier-Stokes equations</subject><subject>Roughness</subject><subject>Stochastic mapping technique</subject><subject>Stochasticity</subject><subject>Wall roughness</subject><subject>Walls</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwAey8ZJMwtuNHxApVvKRKCAFry7Gd1lUSFzsF8fekKmuYzWzuuaM5CF0SKAkQcb0pbW9KCoSVwEsAeYRmRMm6oISpYzQDqHghFeWn6CznDUyjCJ2hl9cx2rXJY7A49zGOa-_wNsU2dB73flxHh9uYcB-d78KwwskMLvY4xd1qPficcRhw28WvPdR0vs_n6KQ1XfYXv3uO3u_v3haPxfL54WlxuywsE2wsKgsto3UL3DFHjVRCWFaBASmgUcBrx2tW11UDpnFOGsFbq7jhjElaNU6wObo69E6HP3Y-j7oP2fquM4OPu6yJkETQmgn4P1pVSnIqajlFySFqU8w5-VZvU-hN-tYE9N603ujJtN6b1sD1ZHpibg6Mn979DD7pbIMfrHcheTtqF8Mf9A8c04YE</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Zayernouri, Mohsen</creator><creator>Park, Sang-Woo</creator><creator>Tartakovsky, Daniel M.</creator><creator>Karniadakis, George Em</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130815</creationdate><title>Stochastic smoothed profile method for modeling random roughness in flow problems</title><author>Zayernouri, Mohsen ; Park, Sang-Woo ; Tartakovsky, Daniel M. ; Karniadakis, George Em</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4c0f329f05d3d2a7866c340a0760b8059d593994b0abdd7a65fc85a533724bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Cylinders</topic><topic>Incompressible flows</topic><topic>Karhunen–Loève expansion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multi-element PCM</topic><topic>Navier-Stokes equations</topic><topic>Roughness</topic><topic>Stochastic mapping technique</topic><topic>Stochasticity</topic><topic>Wall roughness</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zayernouri, Mohsen</creatorcontrib><creatorcontrib>Park, Sang-Woo</creatorcontrib><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zayernouri, Mohsen</au><au>Park, Sang-Woo</au><au>Tartakovsky, Daniel M.</au><au>Karniadakis, George Em</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic smoothed profile method for modeling random roughness in flow problems</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2013-08-15</date><risdate>2013</risdate><volume>263</volume><spage>99</spage><epage>112</epage><pages>99-112</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We present an efficient computational method to model fluid flow in the presence of random wall roughness. A random flow domain is represented by a stochastic indicator function having a smoothed profile perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid. This procedure introduces a stochastic force into the Navier–Stokes equations, and modifies the boundary conditions at the fluid–solid interface. We employ a high-order semi-implicit splitting scheme implemented in the context of a spectral/hp element method in order to discretize the physical domain. The stochastic roughness is treated as a second-order autoregressive process that is represented by a Karhunen–Loève expansion. A multi-element probabilistic collocation method is employed to solve the resulting stochastic Navier–Stokes equations. This method is applied to simulate external flow past a rough cylinder and internal Stokes flow between two parallel plates with random wall roughness. In the first problem, we develop an analytical solution for the asymptotic behavior of the lift coefficient CL to verify the results. In the second test-case, we compare the mean and the standard deviation of the velocity field to those obtained from a different method called stochastic mapping approach (SMA), developed by Tartakovsky and Xiu (2006).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2013.05.007</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2013-08, Vol.263, p.99-112
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_1671629360
source Elsevier ScienceDirect Journals
subjects Computer simulation
Cylinders
Incompressible flows
Karhunen–Loève expansion
Mathematical analysis
Mathematical models
Multi-element PCM
Navier-Stokes equations
Roughness
Stochastic mapping technique
Stochasticity
Wall roughness
Walls
title Stochastic smoothed profile method for modeling random roughness in flow problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20smoothed%20profile%20method%20for%20modeling%20random%20roughness%20in%20flow%20problems&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Zayernouri,%20Mohsen&rft.date=2013-08-15&rft.volume=263&rft.spage=99&rft.epage=112&rft.pages=99-112&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2013.05.007&rft_dat=%3Cproquest_cross%3E1448752697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448752697&rft_id=info:pmid/&rft_els_id=S0045782513001242&rfr_iscdi=true