Analysis and modeling of an optical fiber loop resonator and an evanescent field absorption sensor for the application for chemical detection

Optical fiber loop resonator (FLR) and fiber loop ring down spectroscopy (FLRDS) are two recent techniques used for chemical and gas sensing application based on evanescent field interaction. In chemical sensing applications, a short region of the fiber core is exposed to the external environment, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2013-05, Vol.194, p.160-168
Hauptverfasser: Linslal, C.L., Syam Mohan, P.M., Halder, Arindam, Gangopadhyay, Tarun Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue
container_start_page 160
container_title Sensors and actuators. A. Physical.
container_volume 194
creator Linslal, C.L.
Syam Mohan, P.M.
Halder, Arindam
Gangopadhyay, Tarun Kumar
description Optical fiber loop resonator (FLR) and fiber loop ring down spectroscopy (FLRDS) are two recent techniques used for chemical and gas sensing application based on evanescent field interaction. In chemical sensing applications, a short region of the fiber core is exposed to the external environment, so that evanescent field can interact with the chemical. The evanescent field access region in single mode fiber has been developed practically by etching a small portion of the cladding and it is used as sensor element in the fiber loop cavity resonator. In this study, a fiber loop cavity resonator has been theoretically modeled and the shift of cavity resonances due to change of the refractive index of the external medium is presented. The theoretical predictions are compared with experimental results. It is observed that when the sample is applied to the evanescent field interaction block (EAB), the cavity resonances remained symmetric while the width of the signal is increased as expected from finesse degradation. In the second step of this paper, modeling on the optimization of the parameters of EAB is carried out for the sensor length (1–1.5mm) and diameter (less than 20μm) of the etched optical fiber. Modeling parameters are similar with practical realization. Finally, EAB as a sensor element for chemical sensing is used with a 419-ppm cobalt nitrate solution and isopropanol.
doi_str_mv 10.1016/j.sna.2013.01.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671628914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424713000344</els_id><sourcerecordid>1464597965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c3f802c9c2b8cfd5606553f23abb9bbb5651aedbbb52b28428951e36b32eb4653</originalsourceid><addsrcrecordid>eNqFUctOxSAUJEYTr48PcMfSTSuv0jaujPGVmLjRNQF6qtxwoUI18SP8Z-m9rnVBOGeYmWQYhM4oqSmh8mJd56BrRiivCa0Jo3toRbuWV5zIfh-tSM9EJZhoD9FRzmtCCOdtu0LfV0H7r-wy1mHAmziAd-EVx7HsOE6zs9rj0RlI2Mc44QQ5Bj3HtOUXDnzqANlCmAsNfMFMjqkIY8AZQpnxWM78BlhPky9-26cFs2-w2foPMINd4BN0MGqf4fT3PkYvtzfP1_fV49Pdw_XVY2UF6-fK8rEjzPaWmc6OQyOJbBo-Mq6N6Y0xjWyohmGZmGGdYF3fUODScAZGyIYfo_Od75Ti-wfkWW1cyeB9yRI_sqKypbKoqPifKqRo-rbfutId1aaYc4JRTcltdPpSlKilJbVWpSW1tKQIVaWlorncaaDE_XSQVLYOgoXBpfInaojuD_UP6UGdFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464597965</pqid></control><display><type>article</type><title>Analysis and modeling of an optical fiber loop resonator and an evanescent field absorption sensor for the application for chemical detection</title><source>Elsevier ScienceDirect Journals</source><creator>Linslal, C.L. ; Syam Mohan, P.M. ; Halder, Arindam ; Gangopadhyay, Tarun Kumar</creator><creatorcontrib>Linslal, C.L. ; Syam Mohan, P.M. ; Halder, Arindam ; Gangopadhyay, Tarun Kumar</creatorcontrib><description>Optical fiber loop resonator (FLR) and fiber loop ring down spectroscopy (FLRDS) are two recent techniques used for chemical and gas sensing application based on evanescent field interaction. In chemical sensing applications, a short region of the fiber core is exposed to the external environment, so that evanescent field can interact with the chemical. The evanescent field access region in single mode fiber has been developed practically by etching a small portion of the cladding and it is used as sensor element in the fiber loop cavity resonator. In this study, a fiber loop cavity resonator has been theoretically modeled and the shift of cavity resonances due to change of the refractive index of the external medium is presented. The theoretical predictions are compared with experimental results. It is observed that when the sample is applied to the evanescent field interaction block (EAB), the cavity resonances remained symmetric while the width of the signal is increased as expected from finesse degradation. In the second step of this paper, modeling on the optimization of the parameters of EAB is carried out for the sensor length (1–1.5mm) and diameter (less than 20μm) of the etched optical fiber. Modeling parameters are similar with practical realization. Finally, EAB as a sensor element for chemical sensing is used with a 419-ppm cobalt nitrate solution and isopropanol.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2013.01.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Absorption spectroscopy ; Actuators ; Cavity resonators ; Chemical sensor ; Detection ; Etched fiber ; Etching ; Evanescent field interaction ; Fiber optic sensor ; Fiber ring loop cavity ; Fibers ; Gas sensors ; Mathematical models ; Optical fibers ; Resonator ; Resonators ; Sensors</subject><ispartof>Sensors and actuators. A. Physical., 2013-05, Vol.194, p.160-168</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c3f802c9c2b8cfd5606553f23abb9bbb5651aedbbb52b28428951e36b32eb4653</citedby><cites>FETCH-LOGICAL-c429t-c3f802c9c2b8cfd5606553f23abb9bbb5651aedbbb52b28428951e36b32eb4653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924424713000344$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Linslal, C.L.</creatorcontrib><creatorcontrib>Syam Mohan, P.M.</creatorcontrib><creatorcontrib>Halder, Arindam</creatorcontrib><creatorcontrib>Gangopadhyay, Tarun Kumar</creatorcontrib><title>Analysis and modeling of an optical fiber loop resonator and an evanescent field absorption sensor for the application for chemical detection</title><title>Sensors and actuators. A. Physical.</title><description>Optical fiber loop resonator (FLR) and fiber loop ring down spectroscopy (FLRDS) are two recent techniques used for chemical and gas sensing application based on evanescent field interaction. In chemical sensing applications, a short region of the fiber core is exposed to the external environment, so that evanescent field can interact with the chemical. The evanescent field access region in single mode fiber has been developed practically by etching a small portion of the cladding and it is used as sensor element in the fiber loop cavity resonator. In this study, a fiber loop cavity resonator has been theoretically modeled and the shift of cavity resonances due to change of the refractive index of the external medium is presented. The theoretical predictions are compared with experimental results. It is observed that when the sample is applied to the evanescent field interaction block (EAB), the cavity resonances remained symmetric while the width of the signal is increased as expected from finesse degradation. In the second step of this paper, modeling on the optimization of the parameters of EAB is carried out for the sensor length (1–1.5mm) and diameter (less than 20μm) of the etched optical fiber. Modeling parameters are similar with practical realization. Finally, EAB as a sensor element for chemical sensing is used with a 419-ppm cobalt nitrate solution and isopropanol.</description><subject>Absorption spectroscopy</subject><subject>Actuators</subject><subject>Cavity resonators</subject><subject>Chemical sensor</subject><subject>Detection</subject><subject>Etched fiber</subject><subject>Etching</subject><subject>Evanescent field interaction</subject><subject>Fiber optic sensor</subject><subject>Fiber ring loop cavity</subject><subject>Fibers</subject><subject>Gas sensors</subject><subject>Mathematical models</subject><subject>Optical fibers</subject><subject>Resonator</subject><subject>Resonators</subject><subject>Sensors</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUctOxSAUJEYTr48PcMfSTSuv0jaujPGVmLjRNQF6qtxwoUI18SP8Z-m9rnVBOGeYmWQYhM4oqSmh8mJd56BrRiivCa0Jo3toRbuWV5zIfh-tSM9EJZhoD9FRzmtCCOdtu0LfV0H7r-wy1mHAmziAd-EVx7HsOE6zs9rj0RlI2Mc44QQ5Bj3HtOUXDnzqANlCmAsNfMFMjqkIY8AZQpnxWM78BlhPky9-26cFs2-w2foPMINd4BN0MGqf4fT3PkYvtzfP1_fV49Pdw_XVY2UF6-fK8rEjzPaWmc6OQyOJbBo-Mq6N6Y0xjWyohmGZmGGdYF3fUODScAZGyIYfo_Od75Ti-wfkWW1cyeB9yRI_sqKypbKoqPifKqRo-rbfutId1aaYc4JRTcltdPpSlKilJbVWpSW1tKQIVaWlorncaaDE_XSQVLYOgoXBpfInaojuD_UP6UGdFw</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Linslal, C.L.</creator><creator>Syam Mohan, P.M.</creator><creator>Halder, Arindam</creator><creator>Gangopadhyay, Tarun Kumar</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Analysis and modeling of an optical fiber loop resonator and an evanescent field absorption sensor for the application for chemical detection</title><author>Linslal, C.L. ; Syam Mohan, P.M. ; Halder, Arindam ; Gangopadhyay, Tarun Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c3f802c9c2b8cfd5606553f23abb9bbb5651aedbbb52b28428951e36b32eb4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Absorption spectroscopy</topic><topic>Actuators</topic><topic>Cavity resonators</topic><topic>Chemical sensor</topic><topic>Detection</topic><topic>Etched fiber</topic><topic>Etching</topic><topic>Evanescent field interaction</topic><topic>Fiber optic sensor</topic><topic>Fiber ring loop cavity</topic><topic>Fibers</topic><topic>Gas sensors</topic><topic>Mathematical models</topic><topic>Optical fibers</topic><topic>Resonator</topic><topic>Resonators</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linslal, C.L.</creatorcontrib><creatorcontrib>Syam Mohan, P.M.</creatorcontrib><creatorcontrib>Halder, Arindam</creatorcontrib><creatorcontrib>Gangopadhyay, Tarun Kumar</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linslal, C.L.</au><au>Syam Mohan, P.M.</au><au>Halder, Arindam</au><au>Gangopadhyay, Tarun Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and modeling of an optical fiber loop resonator and an evanescent field absorption sensor for the application for chemical detection</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>194</volume><spage>160</spage><epage>168</epage><pages>160-168</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Optical fiber loop resonator (FLR) and fiber loop ring down spectroscopy (FLRDS) are two recent techniques used for chemical and gas sensing application based on evanescent field interaction. In chemical sensing applications, a short region of the fiber core is exposed to the external environment, so that evanescent field can interact with the chemical. The evanescent field access region in single mode fiber has been developed practically by etching a small portion of the cladding and it is used as sensor element in the fiber loop cavity resonator. In this study, a fiber loop cavity resonator has been theoretically modeled and the shift of cavity resonances due to change of the refractive index of the external medium is presented. The theoretical predictions are compared with experimental results. It is observed that when the sample is applied to the evanescent field interaction block (EAB), the cavity resonances remained symmetric while the width of the signal is increased as expected from finesse degradation. In the second step of this paper, modeling on the optimization of the parameters of EAB is carried out for the sensor length (1–1.5mm) and diameter (less than 20μm) of the etched optical fiber. Modeling parameters are similar with practical realization. Finally, EAB as a sensor element for chemical sensing is used with a 419-ppm cobalt nitrate solution and isopropanol.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2013.01.021</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2013-05, Vol.194, p.160-168
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_miscellaneous_1671628914
source Elsevier ScienceDirect Journals
subjects Absorption spectroscopy
Actuators
Cavity resonators
Chemical sensor
Detection
Etched fiber
Etching
Evanescent field interaction
Fiber optic sensor
Fiber ring loop cavity
Fibers
Gas sensors
Mathematical models
Optical fibers
Resonator
Resonators
Sensors
title Analysis and modeling of an optical fiber loop resonator and an evanescent field absorption sensor for the application for chemical detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20modeling%20of%20an%20optical%20fiber%20loop%20resonator%20and%20an%20evanescent%20field%20absorption%20sensor%20for%20the%20application%20for%20chemical%20detection&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Linslal,%20C.L.&rft.date=2013-05-01&rft.volume=194&rft.spage=160&rft.epage=168&rft.pages=160-168&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2013.01.021&rft_dat=%3Cproquest_cross%3E1464597965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464597965&rft_id=info:pmid/&rft_els_id=S0924424713000344&rfr_iscdi=true