A nonparametric Riemannian framework on tensor field with application to foreground segmentation
Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some sce...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2012-11, Vol.45 (11), p.3997-4017 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4017 |
---|---|
container_issue | 11 |
container_start_page | 3997 |
container_title | Pattern recognition |
container_volume | 45 |
creator | Caseiro, Rui Martins, Pedro Henriques, João F. Batista, Jorge |
description | Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some scenarios, simple parametric models do not accurately explain the physical processes. Kernel density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonparametric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the existing tensor-based algorithms. We present a mathematically sound framework for nonparametric modeling on tensor field to foreground detection. We endow the tensor manifold with two well-founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining the mathematical soundness and the excellent segmentation performance. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this framework.
► We present a novel nonparametric Riemannian framework on the tensor manifold. ► We nonparametrically reformulated a tensor-based algorithm to foreground detection. ► The manifold is endowed with two Riemannian metrics (Affine-Invariant and Log-Euclidean). ► By inducing a null-curvature space, Log-Euclidean considerably simplifies the scheme. ► Theoretical aspects are defined/presented and metrics are compared experimentally. |
doi_str_mv | 10.1016/j.patcog.2012.04.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671628913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320312001689</els_id><sourcerecordid>1671628913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-fcaaded14199ef63742e906c0ceba493a8c5c73c0849689112529746964b38823</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS1EJZbCP-DgCxKXpB7b68QXpKqiUKkSUtWejTuZLF4SO9heKv49WbbiyGmkee_N03yMvQPRggBzsW8XXzHtWilAtkK3AuAF20DfqWYLWr5kGyEUNEoK9Yq9LmUvBHSrsGHfLnlMcfHZz1RzQH4XaPYxBh_5eFw-pfyDp8grxZIyHwNNA38K9Tv3yzIF9DUc1cTHlGmX0yEOvNBuplj_Sm_Y2einQm-f5zl7uP50f_Wluf36-ebq8rZBZWxtRvR-oAE0WEujUZ2WZIVBgfTotVW-xy12CkWvrektgNxK22ljjX5UfS_VOftwurvk9PNApbo5FKRp8pHSoTgwHRi5JtVq1Scr5lRKptEtOcw-_3Yg3BGo27sTUHcE6oR2K9A19v65wRf000onYij_stII1W21Xn0fTz5a3_0VKLuCgSLSEDJhdUMK_y_6A7fPjoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671628913</pqid></control><display><type>article</type><title>A nonparametric Riemannian framework on tensor field with application to foreground segmentation</title><source>Elsevier ScienceDirect Journals</source><creator>Caseiro, Rui ; Martins, Pedro ; Henriques, João F. ; Batista, Jorge</creator><creatorcontrib>Caseiro, Rui ; Martins, Pedro ; Henriques, João F. ; Batista, Jorge</creatorcontrib><description>Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some scenarios, simple parametric models do not accurately explain the physical processes. Kernel density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonparametric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the existing tensor-based algorithms. We present a mathematically sound framework for nonparametric modeling on tensor field to foreground detection. We endow the tensor manifold with two well-founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining the mathematical soundness and the excellent segmentation performance. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this framework.
► We present a novel nonparametric Riemannian framework on the tensor manifold. ► We nonparametrically reformulated a tensor-based algorithm to foreground detection. ► The manifold is endowed with two Riemannian metrics (Affine-Invariant and Log-Euclidean). ► By inducing a null-curvature space, Log-Euclidean considerably simplifies the scheme. ► Theoretical aspects are defined/presented and metrics are compared experimentally.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2012.04.011</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Density ; Exact sciences and technology ; Foreground segmentation on tensor field ; Gaussian ; Information, signal and communications theory ; Kernel density estimation ; Manifolds ; Mathematical analysis ; Mathematical models ; Nonparametric density estimation ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Riemannian geometry ; Riemannian metrics ; Segmentation ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Tasks ; Telecommunications and information theory ; Tensor manifold ; Tensors</subject><ispartof>Pattern recognition, 2012-11, Vol.45 (11), p.3997-4017</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-fcaaded14199ef63742e906c0ceba493a8c5c73c0849689112529746964b38823</citedby><cites>FETCH-LOGICAL-c369t-fcaaded14199ef63742e906c0ceba493a8c5c73c0849689112529746964b38823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2012.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26037544$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Caseiro, Rui</creatorcontrib><creatorcontrib>Martins, Pedro</creatorcontrib><creatorcontrib>Henriques, João F.</creatorcontrib><creatorcontrib>Batista, Jorge</creatorcontrib><title>A nonparametric Riemannian framework on tensor field with application to foreground segmentation</title><title>Pattern recognition</title><description>Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some scenarios, simple parametric models do not accurately explain the physical processes. Kernel density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonparametric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the existing tensor-based algorithms. We present a mathematically sound framework for nonparametric modeling on tensor field to foreground detection. We endow the tensor manifold with two well-founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining the mathematical soundness and the excellent segmentation performance. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this framework.
► We present a novel nonparametric Riemannian framework on the tensor manifold. ► We nonparametrically reformulated a tensor-based algorithm to foreground detection. ► The manifold is endowed with two Riemannian metrics (Affine-Invariant and Log-Euclidean). ► By inducing a null-curvature space, Log-Euclidean considerably simplifies the scheme. ► Theoretical aspects are defined/presented and metrics are compared experimentally.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Foreground segmentation on tensor field</subject><subject>Gaussian</subject><subject>Information, signal and communications theory</subject><subject>Kernel density estimation</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonparametric density estimation</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Riemannian geometry</subject><subject>Riemannian metrics</subject><subject>Segmentation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Tasks</subject><subject>Telecommunications and information theory</subject><subject>Tensor manifold</subject><subject>Tensors</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhS1EJZbCP-DgCxKXpB7b68QXpKqiUKkSUtWejTuZLF4SO9heKv49WbbiyGmkee_N03yMvQPRggBzsW8XXzHtWilAtkK3AuAF20DfqWYLWr5kGyEUNEoK9Yq9LmUvBHSrsGHfLnlMcfHZz1RzQH4XaPYxBh_5eFw-pfyDp8grxZIyHwNNA38K9Tv3yzIF9DUc1cTHlGmX0yEOvNBuplj_Sm_Y2einQm-f5zl7uP50f_Wluf36-ebq8rZBZWxtRvR-oAE0WEujUZ2WZIVBgfTotVW-xy12CkWvrektgNxK22ljjX5UfS_VOftwurvk9PNApbo5FKRp8pHSoTgwHRi5JtVq1Scr5lRKptEtOcw-_3Yg3BGo27sTUHcE6oR2K9A19v65wRf000onYij_stII1W21Xn0fTz5a3_0VKLuCgSLSEDJhdUMK_y_6A7fPjoI</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Caseiro, Rui</creator><creator>Martins, Pedro</creator><creator>Henriques, João F.</creator><creator>Batista, Jorge</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121101</creationdate><title>A nonparametric Riemannian framework on tensor field with application to foreground segmentation</title><author>Caseiro, Rui ; Martins, Pedro ; Henriques, João F. ; Batista, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-fcaaded14199ef63742e906c0ceba493a8c5c73c0849689112529746964b38823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Foreground segmentation on tensor field</topic><topic>Gaussian</topic><topic>Information, signal and communications theory</topic><topic>Kernel density estimation</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonparametric density estimation</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Riemannian geometry</topic><topic>Riemannian metrics</topic><topic>Segmentation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Tasks</topic><topic>Telecommunications and information theory</topic><topic>Tensor manifold</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caseiro, Rui</creatorcontrib><creatorcontrib>Martins, Pedro</creatorcontrib><creatorcontrib>Henriques, João F.</creatorcontrib><creatorcontrib>Batista, Jorge</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caseiro, Rui</au><au>Martins, Pedro</au><au>Henriques, João F.</au><au>Batista, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonparametric Riemannian framework on tensor field with application to foreground segmentation</atitle><jtitle>Pattern recognition</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>45</volume><issue>11</issue><spage>3997</spage><epage>4017</epage><pages>3997-4017</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some scenarios, simple parametric models do not accurately explain the physical processes. Kernel density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonparametric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the existing tensor-based algorithms. We present a mathematically sound framework for nonparametric modeling on tensor field to foreground detection. We endow the tensor manifold with two well-founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining the mathematical soundness and the excellent segmentation performance. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this framework.
► We present a novel nonparametric Riemannian framework on the tensor manifold. ► We nonparametrically reformulated a tensor-based algorithm to foreground detection. ► The manifold is endowed with two Riemannian metrics (Affine-Invariant and Log-Euclidean). ► By inducing a null-curvature space, Log-Euclidean considerably simplifies the scheme. ► Theoretical aspects are defined/presented and metrics are compared experimentally.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2012.04.011</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2012-11, Vol.45 (11), p.3997-4017 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671628913 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Density Exact sciences and technology Foreground segmentation on tensor field Gaussian Information, signal and communications theory Kernel density estimation Manifolds Mathematical analysis Mathematical models Nonparametric density estimation Pattern recognition Pattern recognition. Digital image processing. Computational geometry Riemannian geometry Riemannian metrics Segmentation Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Tasks Telecommunications and information theory Tensor manifold Tensors |
title | A nonparametric Riemannian framework on tensor field with application to foreground segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonparametric%20Riemannian%20framework%20on%20tensor%20field%20with%20application%20to%20foreground%20segmentation&rft.jtitle=Pattern%20recognition&rft.au=Caseiro,%20Rui&rft.date=2012-11-01&rft.volume=45&rft.issue=11&rft.spage=3997&rft.epage=4017&rft.pages=3997-4017&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2012.04.011&rft_dat=%3Cproquest_cross%3E1671628913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671628913&rft_id=info:pmid/&rft_els_id=S0031320312001689&rfr_iscdi=true |