A nonparametric Riemannian framework on tensor field with application to foreground segmentation

Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some sce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2012-11, Vol.45 (11), p.3997-4017
Hauptverfasser: Caseiro, Rui, Martins, Pedro, Henriques, João F., Batista, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4017
container_issue 11
container_start_page 3997
container_title Pattern recognition
container_volume 45
creator Caseiro, Rui
Martins, Pedro
Henriques, João F.
Batista, Jorge
description Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some scenarios, simple parametric models do not accurately explain the physical processes. Kernel density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonparametric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the existing tensor-based algorithms. We present a mathematically sound framework for nonparametric modeling on tensor field to foreground detection. We endow the tensor manifold with two well-founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining the mathematical soundness and the excellent segmentation performance. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this framework. ► We present a novel nonparametric Riemannian framework on the tensor manifold. ► We nonparametrically reformulated a tensor-based algorithm to foreground detection. ► The manifold is endowed with two Riemannian metrics (Affine-Invariant and Log-Euclidean). ► By inducing a null-curvature space, Log-Euclidean considerably simplifies the scheme. ► Theoretical aspects are defined/presented and metrics are compared experimentally.
doi_str_mv 10.1016/j.patcog.2012.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671628913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320312001689</els_id><sourcerecordid>1671628913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-fcaaded14199ef63742e906c0ceba493a8c5c73c0849689112529746964b38823</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS1EJZbCP-DgCxKXpB7b68QXpKqiUKkSUtWejTuZLF4SO9heKv49WbbiyGmkee_N03yMvQPRggBzsW8XXzHtWilAtkK3AuAF20DfqWYLWr5kGyEUNEoK9Yq9LmUvBHSrsGHfLnlMcfHZz1RzQH4XaPYxBh_5eFw-pfyDp8grxZIyHwNNA38K9Tv3yzIF9DUc1cTHlGmX0yEOvNBuplj_Sm_Y2einQm-f5zl7uP50f_Wluf36-ebq8rZBZWxtRvR-oAE0WEujUZ2WZIVBgfTotVW-xy12CkWvrektgNxK22ljjX5UfS_VOftwurvk9PNApbo5FKRp8pHSoTgwHRi5JtVq1Scr5lRKptEtOcw-_3Yg3BGo27sTUHcE6oR2K9A19v65wRf000onYij_stII1W21Xn0fTz5a3_0VKLuCgSLSEDJhdUMK_y_6A7fPjoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671628913</pqid></control><display><type>article</type><title>A nonparametric Riemannian framework on tensor field with application to foreground segmentation</title><source>Elsevier ScienceDirect Journals</source><creator>Caseiro, Rui ; Martins, Pedro ; Henriques, João F. ; Batista, Jorge</creator><creatorcontrib>Caseiro, Rui ; Martins, Pedro ; Henriques, João F. ; Batista, Jorge</creatorcontrib><description>Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some scenarios, simple parametric models do not accurately explain the physical processes. Kernel density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonparametric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the existing tensor-based algorithms. We present a mathematically sound framework for nonparametric modeling on tensor field to foreground detection. We endow the tensor manifold with two well-founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining the mathematical soundness and the excellent segmentation performance. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this framework. ► We present a novel nonparametric Riemannian framework on the tensor manifold. ► We nonparametrically reformulated a tensor-based algorithm to foreground detection. ► The manifold is endowed with two Riemannian metrics (Affine-Invariant and Log-Euclidean). ► By inducing a null-curvature space, Log-Euclidean considerably simplifies the scheme. ► Theoretical aspects are defined/presented and metrics are compared experimentally.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2012.04.011</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Density ; Exact sciences and technology ; Foreground segmentation on tensor field ; Gaussian ; Information, signal and communications theory ; Kernel density estimation ; Manifolds ; Mathematical analysis ; Mathematical models ; Nonparametric density estimation ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Riemannian geometry ; Riemannian metrics ; Segmentation ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Tasks ; Telecommunications and information theory ; Tensor manifold ; Tensors</subject><ispartof>Pattern recognition, 2012-11, Vol.45 (11), p.3997-4017</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-fcaaded14199ef63742e906c0ceba493a8c5c73c0849689112529746964b38823</citedby><cites>FETCH-LOGICAL-c369t-fcaaded14199ef63742e906c0ceba493a8c5c73c0849689112529746964b38823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2012.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26037544$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Caseiro, Rui</creatorcontrib><creatorcontrib>Martins, Pedro</creatorcontrib><creatorcontrib>Henriques, João F.</creatorcontrib><creatorcontrib>Batista, Jorge</creatorcontrib><title>A nonparametric Riemannian framework on tensor field with application to foreground segmentation</title><title>Pattern recognition</title><description>Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some scenarios, simple parametric models do not accurately explain the physical processes. Kernel density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonparametric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the existing tensor-based algorithms. We present a mathematically sound framework for nonparametric modeling on tensor field to foreground detection. We endow the tensor manifold with two well-founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining the mathematical soundness and the excellent segmentation performance. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this framework. ► We present a novel nonparametric Riemannian framework on the tensor manifold. ► We nonparametrically reformulated a tensor-based algorithm to foreground detection. ► The manifold is endowed with two Riemannian metrics (Affine-Invariant and Log-Euclidean). ► By inducing a null-curvature space, Log-Euclidean considerably simplifies the scheme. ► Theoretical aspects are defined/presented and metrics are compared experimentally.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Foreground segmentation on tensor field</subject><subject>Gaussian</subject><subject>Information, signal and communications theory</subject><subject>Kernel density estimation</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonparametric density estimation</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Riemannian geometry</subject><subject>Riemannian metrics</subject><subject>Segmentation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Tasks</subject><subject>Telecommunications and information theory</subject><subject>Tensor manifold</subject><subject>Tensors</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhS1EJZbCP-DgCxKXpB7b68QXpKqiUKkSUtWejTuZLF4SO9heKv49WbbiyGmkee_N03yMvQPRggBzsW8XXzHtWilAtkK3AuAF20DfqWYLWr5kGyEUNEoK9Yq9LmUvBHSrsGHfLnlMcfHZz1RzQH4XaPYxBh_5eFw-pfyDp8grxZIyHwNNA38K9Tv3yzIF9DUc1cTHlGmX0yEOvNBuplj_Sm_Y2einQm-f5zl7uP50f_Wluf36-ebq8rZBZWxtRvR-oAE0WEujUZ2WZIVBgfTotVW-xy12CkWvrektgNxK22ljjX5UfS_VOftwurvk9PNApbo5FKRp8pHSoTgwHRi5JtVq1Scr5lRKptEtOcw-_3Yg3BGo27sTUHcE6oR2K9A19v65wRf000onYij_stII1W21Xn0fTz5a3_0VKLuCgSLSEDJhdUMK_y_6A7fPjoI</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Caseiro, Rui</creator><creator>Martins, Pedro</creator><creator>Henriques, João F.</creator><creator>Batista, Jorge</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121101</creationdate><title>A nonparametric Riemannian framework on tensor field with application to foreground segmentation</title><author>Caseiro, Rui ; Martins, Pedro ; Henriques, João F. ; Batista, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-fcaaded14199ef63742e906c0ceba493a8c5c73c0849689112529746964b38823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Foreground segmentation on tensor field</topic><topic>Gaussian</topic><topic>Information, signal and communications theory</topic><topic>Kernel density estimation</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonparametric density estimation</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Riemannian geometry</topic><topic>Riemannian metrics</topic><topic>Segmentation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Tasks</topic><topic>Telecommunications and information theory</topic><topic>Tensor manifold</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caseiro, Rui</creatorcontrib><creatorcontrib>Martins, Pedro</creatorcontrib><creatorcontrib>Henriques, João F.</creatorcontrib><creatorcontrib>Batista, Jorge</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caseiro, Rui</au><au>Martins, Pedro</au><au>Henriques, João F.</au><au>Batista, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonparametric Riemannian framework on tensor field with application to foreground segmentation</atitle><jtitle>Pattern recognition</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>45</volume><issue>11</issue><spage>3997</spage><epage>4017</epage><pages>3997-4017</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some scenarios, simple parametric models do not accurately explain the physical processes. Kernel density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonparametric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the existing tensor-based algorithms. We present a mathematically sound framework for nonparametric modeling on tensor field to foreground detection. We endow the tensor manifold with two well-founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining the mathematical soundness and the excellent segmentation performance. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this framework. ► We present a novel nonparametric Riemannian framework on the tensor manifold. ► We nonparametrically reformulated a tensor-based algorithm to foreground detection. ► The manifold is endowed with two Riemannian metrics (Affine-Invariant and Log-Euclidean). ► By inducing a null-curvature space, Log-Euclidean considerably simplifies the scheme. ► Theoretical aspects are defined/presented and metrics are compared experimentally.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2012.04.011</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2012-11, Vol.45 (11), p.3997-4017
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_1671628913
source Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Density
Exact sciences and technology
Foreground segmentation on tensor field
Gaussian
Information, signal and communications theory
Kernel density estimation
Manifolds
Mathematical analysis
Mathematical models
Nonparametric density estimation
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Riemannian geometry
Riemannian metrics
Segmentation
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Tasks
Telecommunications and information theory
Tensor manifold
Tensors
title A nonparametric Riemannian framework on tensor field with application to foreground segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonparametric%20Riemannian%20framework%20on%20tensor%20field%20with%20application%20to%20foreground%20segmentation&rft.jtitle=Pattern%20recognition&rft.au=Caseiro,%20Rui&rft.date=2012-11-01&rft.volume=45&rft.issue=11&rft.spage=3997&rft.epage=4017&rft.pages=3997-4017&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2012.04.011&rft_dat=%3Cproquest_cross%3E1671628913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671628913&rft_id=info:pmid/&rft_els_id=S0031320312001689&rfr_iscdi=true