HTG-Based Kinematic Modeling for Positioning of a Multi-Articulated Wheeled Mobile Manipulator

This paper presents a novel methodology for positioning an explosive ordnance device (EOD) which consists of a mobile manipulator with 12° of freedom. The approach uses an extension of a homogeneus transformation graph (HTG) which can be used in the kinematic modeling of mobile manipulators and unma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2014-11, Vol.76 (2), p.267-282
Hauptverfasser: Zúñiga-Avilés, L. A., Pedraza-Ortega, J. C., Gorrostieta-Hurtado, E., Tovar-Arriaga, S., Ramos-Arreguín, J. M., Aceves-Fernández, M. A., Vargas-Soto, J. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 2
container_start_page 267
container_title Journal of intelligent & robotic systems
container_volume 76
creator Zúñiga-Avilés, L. A.
Pedraza-Ortega, J. C.
Gorrostieta-Hurtado, E.
Tovar-Arriaga, S.
Ramos-Arreguín, J. M.
Aceves-Fernández, M. A.
Vargas-Soto, J. E.
description This paper presents a novel methodology for positioning an explosive ordnance device (EOD) which consists of a mobile manipulator with 12° of freedom. The approach uses an extension of a homogeneus transformation graph (HTG) which can be used in the kinematic modeling of mobile manipulators and unmanned aerial vehicles. In this approach the complete kinematics is modeled as one unit in contrast to previous approaches where the manipulator and mobile body are decoupled. The system is tested in several escenarios (simulated and real experimentation) like approaching to an explosive device location on the plane as well as in slope ways, climbing stairs, lifting itself and manipulating procedures. All the aforementioned scenarios were developed using the HTG which establishes the appropriate transformations and interaction parameters of the coupled system. Finally, the system is tested (simulated and real experimentation) for positioning its end device in a target with a RMS positioning average error ofr 7.91 mm which is acceptable for this kind of devices.
doi_str_mv 10.1007/s10846-014-0032-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671628255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3441671421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-6360b4cac87ac359df440c4c71f2904d6c9031717e770f669d7f8b1d19b6e04d3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuCGzfRe9s8mqWKjqKDLkbcGTJpqpFOMybtYv69GcaFCK4Ol_Odw-UQcoJwjgDyIiHUTFBARgGqkq53yAS5rCgwULtkAqpECqUS--QgpU8AUDVXE_J2N5_SK5NcUzz43i3N4G0xC43rfP9etCEWzyH5wYd-c4e2MMVs7AZPL2Mmx84MOfn64VyXdRYWvnPFzPR-tbFCPCJ7remSO_7RQ_JyezO_vqOPT9P768tHahmqgYpKwIJZY2tpbMVV0zIGllmJbamANcIqqFCidFJCK4RqZFsvsEG1EC771SE52_auYvgaXRr00ifrus70LoxJo5AoyrrkPKOnf9DPMMY-f6eRC8a55CgzhVvKxpBSdK1eRb80ca0R9GZxvV1c58X1ZnG9zplym0mZ7d9d_NX8b-gbylGC1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564557517</pqid></control><display><type>article</type><title>HTG-Based Kinematic Modeling for Positioning of a Multi-Articulated Wheeled Mobile Manipulator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zúñiga-Avilés, L. A. ; Pedraza-Ortega, J. C. ; Gorrostieta-Hurtado, E. ; Tovar-Arriaga, S. ; Ramos-Arreguín, J. M. ; Aceves-Fernández, M. A. ; Vargas-Soto, J. E.</creator><creatorcontrib>Zúñiga-Avilés, L. A. ; Pedraza-Ortega, J. C. ; Gorrostieta-Hurtado, E. ; Tovar-Arriaga, S. ; Ramos-Arreguín, J. M. ; Aceves-Fernández, M. A. ; Vargas-Soto, J. E.</creatorcontrib><description>This paper presents a novel methodology for positioning an explosive ordnance device (EOD) which consists of a mobile manipulator with 12° of freedom. The approach uses an extension of a homogeneus transformation graph (HTG) which can be used in the kinematic modeling of mobile manipulators and unmanned aerial vehicles. In this approach the complete kinematics is modeled as one unit in contrast to previous approaches where the manipulator and mobile body are decoupled. The system is tested in several escenarios (simulated and real experimentation) like approaching to an explosive device location on the plane as well as in slope ways, climbing stairs, lifting itself and manipulating procedures. All the aforementioned scenarios were developed using the HTG which establishes the appropriate transformations and interaction parameters of the coupled system. Finally, the system is tested (simulated and real experimentation) for positioning its end device in a target with a RMS positioning average error ofr 7.91 mm which is acceptable for this kind of devices.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-014-0032-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Control ; Devices ; Electrical Engineering ; Engineering ; Experimentation ; Kinematics ; Manipulators ; Mechanical Engineering ; Mechatronics ; Ordnance ; Robot arms ; Robotics ; Slopes ; Transformations</subject><ispartof>Journal of intelligent &amp; robotic systems, 2014-11, Vol.76 (2), p.267-282</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-6360b4cac87ac359df440c4c71f2904d6c9031717e770f669d7f8b1d19b6e04d3</citedby><cites>FETCH-LOGICAL-c419t-6360b4cac87ac359df440c4c71f2904d6c9031717e770f669d7f8b1d19b6e04d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-014-0032-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-014-0032-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zúñiga-Avilés, L. A.</creatorcontrib><creatorcontrib>Pedraza-Ortega, J. C.</creatorcontrib><creatorcontrib>Gorrostieta-Hurtado, E.</creatorcontrib><creatorcontrib>Tovar-Arriaga, S.</creatorcontrib><creatorcontrib>Ramos-Arreguín, J. M.</creatorcontrib><creatorcontrib>Aceves-Fernández, M. A.</creatorcontrib><creatorcontrib>Vargas-Soto, J. E.</creatorcontrib><title>HTG-Based Kinematic Modeling for Positioning of a Multi-Articulated Wheeled Mobile Manipulator</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>This paper presents a novel methodology for positioning an explosive ordnance device (EOD) which consists of a mobile manipulator with 12° of freedom. The approach uses an extension of a homogeneus transformation graph (HTG) which can be used in the kinematic modeling of mobile manipulators and unmanned aerial vehicles. In this approach the complete kinematics is modeled as one unit in contrast to previous approaches where the manipulator and mobile body are decoupled. The system is tested in several escenarios (simulated and real experimentation) like approaching to an explosive device location on the plane as well as in slope ways, climbing stairs, lifting itself and manipulating procedures. All the aforementioned scenarios were developed using the HTG which establishes the appropriate transformations and interaction parameters of the coupled system. Finally, the system is tested (simulated and real experimentation) for positioning its end device in a target with a RMS positioning average error ofr 7.91 mm which is acceptable for this kind of devices.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Devices</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Experimentation</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Ordnance</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Slopes</subject><subject>Transformations</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLuCGzfRe9s8mqWKjqKDLkbcGTJpqpFOMybtYv69GcaFCK4Ol_Odw-UQcoJwjgDyIiHUTFBARgGqkq53yAS5rCgwULtkAqpECqUS--QgpU8AUDVXE_J2N5_SK5NcUzz43i3N4G0xC43rfP9etCEWzyH5wYd-c4e2MMVs7AZPL2Mmx84MOfn64VyXdRYWvnPFzPR-tbFCPCJ7remSO_7RQ_JyezO_vqOPT9P768tHahmqgYpKwIJZY2tpbMVV0zIGllmJbamANcIqqFCidFJCK4RqZFsvsEG1EC771SE52_auYvgaXRr00ifrus70LoxJo5AoyrrkPKOnf9DPMMY-f6eRC8a55CgzhVvKxpBSdK1eRb80ca0R9GZxvV1c58X1ZnG9zplym0mZ7d9d_NX8b-gbylGC1w</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Zúñiga-Avilés, L. A.</creator><creator>Pedraza-Ortega, J. C.</creator><creator>Gorrostieta-Hurtado, E.</creator><creator>Tovar-Arriaga, S.</creator><creator>Ramos-Arreguín, J. M.</creator><creator>Aceves-Fernández, M. A.</creator><creator>Vargas-Soto, J. E.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>20141101</creationdate><title>HTG-Based Kinematic Modeling for Positioning of a Multi-Articulated Wheeled Mobile Manipulator</title><author>Zúñiga-Avilés, L. A. ; Pedraza-Ortega, J. C. ; Gorrostieta-Hurtado, E. ; Tovar-Arriaga, S. ; Ramos-Arreguín, J. M. ; Aceves-Fernández, M. A. ; Vargas-Soto, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-6360b4cac87ac359df440c4c71f2904d6c9031717e770f669d7f8b1d19b6e04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Devices</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Experimentation</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Ordnance</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Slopes</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zúñiga-Avilés, L. A.</creatorcontrib><creatorcontrib>Pedraza-Ortega, J. C.</creatorcontrib><creatorcontrib>Gorrostieta-Hurtado, E.</creatorcontrib><creatorcontrib>Tovar-Arriaga, S.</creatorcontrib><creatorcontrib>Ramos-Arreguín, J. M.</creatorcontrib><creatorcontrib>Aceves-Fernández, M. A.</creatorcontrib><creatorcontrib>Vargas-Soto, J. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zúñiga-Avilés, L. A.</au><au>Pedraza-Ortega, J. C.</au><au>Gorrostieta-Hurtado, E.</au><au>Tovar-Arriaga, S.</au><au>Ramos-Arreguín, J. M.</au><au>Aceves-Fernández, M. A.</au><au>Vargas-Soto, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HTG-Based Kinematic Modeling for Positioning of a Multi-Articulated Wheeled Mobile Manipulator</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>76</volume><issue>2</issue><spage>267</spage><epage>282</epage><pages>267-282</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>This paper presents a novel methodology for positioning an explosive ordnance device (EOD) which consists of a mobile manipulator with 12° of freedom. The approach uses an extension of a homogeneus transformation graph (HTG) which can be used in the kinematic modeling of mobile manipulators and unmanned aerial vehicles. In this approach the complete kinematics is modeled as one unit in contrast to previous approaches where the manipulator and mobile body are decoupled. The system is tested in several escenarios (simulated and real experimentation) like approaching to an explosive device location on the plane as well as in slope ways, climbing stairs, lifting itself and manipulating procedures. All the aforementioned scenarios were developed using the HTG which establishes the appropriate transformations and interaction parameters of the coupled system. Finally, the system is tested (simulated and real experimentation) for positioning its end device in a target with a RMS positioning average error ofr 7.91 mm which is acceptable for this kind of devices.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-014-0032-y</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2014-11, Vol.76 (2), p.267-282
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_miscellaneous_1671628255
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Control
Devices
Electrical Engineering
Engineering
Experimentation
Kinematics
Manipulators
Mechanical Engineering
Mechatronics
Ordnance
Robot arms
Robotics
Slopes
Transformations
title HTG-Based Kinematic Modeling for Positioning of a Multi-Articulated Wheeled Mobile Manipulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HTG-Based%20Kinematic%20Modeling%20for%20Positioning%20of%20a%20Multi-Articulated%20Wheeled%20Mobile%20Manipulator&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Z%C3%BA%C3%B1iga-Avil%C3%A9s,%20L.%20A.&rft.date=2014-11-01&rft.volume=76&rft.issue=2&rft.spage=267&rft.epage=282&rft.pages=267-282&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-014-0032-y&rft_dat=%3Cproquest_cross%3E3441671421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564557517&rft_id=info:pmid/&rfr_iscdi=true