Modified Angell Plot of Viscous Flow with Application to Silicate and Metallic Glass-Forming Liquids

The behavior of the Vogel–Fulcher–Tammann (VFT), Avramov and Milchev (AM) and Mauro, Yue, Ellison, Gupta and Allan (MYEGA) functions of viscous flow in relation to t = Tg/(T−To) is analyzed, where Tg is glass transition temperature and To is the temperature in the VFT equation at which the configura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied glass science 2014-06, Vol.5 (2), p.193-205
1. Verfasser: Kozmidis-Petrović, Ana F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 2
container_start_page 193
container_title International journal of applied glass science
container_volume 5
creator Kozmidis-Petrović, Ana F.
description The behavior of the Vogel–Fulcher–Tammann (VFT), Avramov and Milchev (AM) and Mauro, Yue, Ellison, Gupta and Allan (MYEGA) functions of viscous flow in relation to t = Tg/(T−To) is analyzed, where Tg is glass transition temperature and To is the temperature in the VFT equation at which the configurational entropy becomes zero. The Tg‐scaled Arrhenius plot (the Angell plot) has been modified. The log η−(Tg/T) relationships in the Angell plot were modified as log η–(Tg)/(T−To) relationships (Tg‐scaled VFT plot). The values of parameter m1 = d(log η)/dt│T=Tg for some silicate and metallic glass‐forming liquids are presented too. The parameter m1 still exhibits “fragility” effect as does the kinetic fragility parameter m = d(log η)/d (Tg/T)│T=Tg in the Angell plot. The plot of log ηVFT in relation to t = Tg/(T−To) is the linear function unlike the Angell plot. The dependences of log ηMYEGA and log ηAM on t are not linear. It is possible to present the dependences of log η as functions of m1 and t in the form of 3D graphs.
doi_str_mv 10.1111/ijag.12062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671624668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671624668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3722-7bb863fc58ccc7c4cda9eec8378e379fb557e62c77d02d8ba1a8a139d99b54563</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqiw4QsssUFIgdhO_FhWlJailoeAsrQc2ykublziVKV_j0uBBQtmMzPSuaO5N0mOYXYOY13YmZyeQ5QRtJMcoCyHKUQ83_2dGdlPjkKYZbEwY4Szg0SPvbaVNRp066lxDtw73wJfgYkNyi8D6Du_AivbvoLuYuGskq31NWg9eLRfmwGy1mBsWuniDgZOhpD2fTO39RSM7PvS6nCY7FXSBXP03TvJc__q6fI6Hd0NhpfdUaowRSilZckIrlTBlFJU5UpLboximDKDKa_KoqCGIEWpzpBmpYSSSYi55rws8oLgTnK6vbto_PvShFbMo4voStYmehGQUEhQTgiL6MkfdOaXTR2_E7DAGaKUIx6psy2lGh9CYyqxaOxcNmsBM7HJXGwyF1-ZRxhu4ZV1Zv0PKYY33cGPJt1qbGjNx69GNm-CUEwL8XI7EJPJLUS9h3vRw59SGJJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530277929</pqid></control><display><type>article</type><title>Modified Angell Plot of Viscous Flow with Application to Silicate and Metallic Glass-Forming Liquids</title><source>Wiley Online Library All Journals</source><creator>Kozmidis-Petrović, Ana F.</creator><creatorcontrib>Kozmidis-Petrović, Ana F.</creatorcontrib><description>The behavior of the Vogel–Fulcher–Tammann (VFT), Avramov and Milchev (AM) and Mauro, Yue, Ellison, Gupta and Allan (MYEGA) functions of viscous flow in relation to t = Tg/(T−To) is analyzed, where Tg is glass transition temperature and To is the temperature in the VFT equation at which the configurational entropy becomes zero. The Tg‐scaled Arrhenius plot (the Angell plot) has been modified. The log η−(Tg/T) relationships in the Angell plot were modified as log η–(Tg)/(T−To) relationships (Tg‐scaled VFT plot). The values of parameter m1 = d(log η)/dt│T=Tg for some silicate and metallic glass‐forming liquids are presented too. The parameter m1 still exhibits “fragility” effect as does the kinetic fragility parameter m = d(log η)/d (Tg/T)│T=Tg in the Angell plot. The plot of log ηVFT in relation to t = Tg/(T−To) is the linear function unlike the Angell plot. The dependences of log ηMYEGA and log ηAM on t are not linear. It is possible to present the dependences of log η as functions of m1 and t in the form of 3D graphs.</description><identifier>ISSN: 2041-1286</identifier><identifier>EISSN: 2041-1294</identifier><identifier>DOI: 10.1111/ijag.12062</identifier><language>eng</language><publisher>Westerville: Blackwell Publishing Ltd</publisher><subject>Entropy ; Fragility ; Glass ; Graphs ; Liquids ; Mathematical analysis ; Silicates ; Three dimensional ; Viscous flow</subject><ispartof>International journal of applied glass science, 2014-06, Vol.5 (2), p.193-205</ispartof><rights>2014 The American Ceramic Society and Wiley Periodicals, Inc</rights><rights>2014 American Ceramic Society and Wiley Periodicals, Inc</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3722-7bb863fc58ccc7c4cda9eec8378e379fb557e62c77d02d8ba1a8a139d99b54563</citedby><cites>FETCH-LOGICAL-c3722-7bb863fc58ccc7c4cda9eec8378e379fb557e62c77d02d8ba1a8a139d99b54563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijag.12062$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijag.12062$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kozmidis-Petrović, Ana F.</creatorcontrib><title>Modified Angell Plot of Viscous Flow with Application to Silicate and Metallic Glass-Forming Liquids</title><title>International journal of applied glass science</title><addtitle>Int J Appl Glass Sci</addtitle><description>The behavior of the Vogel–Fulcher–Tammann (VFT), Avramov and Milchev (AM) and Mauro, Yue, Ellison, Gupta and Allan (MYEGA) functions of viscous flow in relation to t = Tg/(T−To) is analyzed, where Tg is glass transition temperature and To is the temperature in the VFT equation at which the configurational entropy becomes zero. The Tg‐scaled Arrhenius plot (the Angell plot) has been modified. The log η−(Tg/T) relationships in the Angell plot were modified as log η–(Tg)/(T−To) relationships (Tg‐scaled VFT plot). The values of parameter m1 = d(log η)/dt│T=Tg for some silicate and metallic glass‐forming liquids are presented too. The parameter m1 still exhibits “fragility” effect as does the kinetic fragility parameter m = d(log η)/d (Tg/T)│T=Tg in the Angell plot. The plot of log ηVFT in relation to t = Tg/(T−To) is the linear function unlike the Angell plot. The dependences of log ηMYEGA and log ηAM on t are not linear. It is possible to present the dependences of log η as functions of m1 and t in the form of 3D graphs.</description><subject>Entropy</subject><subject>Fragility</subject><subject>Glass</subject><subject>Graphs</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Silicates</subject><subject>Three dimensional</subject><subject>Viscous flow</subject><issn>2041-1286</issn><issn>2041-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqiw4QsssUFIgdhO_FhWlJailoeAsrQc2ykublziVKV_j0uBBQtmMzPSuaO5N0mOYXYOY13YmZyeQ5QRtJMcoCyHKUQ83_2dGdlPjkKYZbEwY4Szg0SPvbaVNRp066lxDtw73wJfgYkNyi8D6Du_AivbvoLuYuGskq31NWg9eLRfmwGy1mBsWuniDgZOhpD2fTO39RSM7PvS6nCY7FXSBXP03TvJc__q6fI6Hd0NhpfdUaowRSilZckIrlTBlFJU5UpLboximDKDKa_KoqCGIEWpzpBmpYSSSYi55rws8oLgTnK6vbto_PvShFbMo4voStYmehGQUEhQTgiL6MkfdOaXTR2_E7DAGaKUIx6psy2lGh9CYyqxaOxcNmsBM7HJXGwyF1-ZRxhu4ZV1Zv0PKYY33cGPJt1qbGjNx69GNm-CUEwL8XI7EJPJLUS9h3vRw59SGJJU</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Kozmidis-Petrović, Ana F.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>8BQ</scope></search><sort><creationdate>201406</creationdate><title>Modified Angell Plot of Viscous Flow with Application to Silicate and Metallic Glass-Forming Liquids</title><author>Kozmidis-Petrović, Ana F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3722-7bb863fc58ccc7c4cda9eec8378e379fb557e62c77d02d8ba1a8a139d99b54563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Entropy</topic><topic>Fragility</topic><topic>Glass</topic><topic>Graphs</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Silicates</topic><topic>Three dimensional</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozmidis-Petrović, Ana F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>METADEX</collection><jtitle>International journal of applied glass science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozmidis-Petrović, Ana F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Angell Plot of Viscous Flow with Application to Silicate and Metallic Glass-Forming Liquids</atitle><jtitle>International journal of applied glass science</jtitle><addtitle>Int J Appl Glass Sci</addtitle><date>2014-06</date><risdate>2014</risdate><volume>5</volume><issue>2</issue><spage>193</spage><epage>205</epage><pages>193-205</pages><issn>2041-1286</issn><eissn>2041-1294</eissn><abstract>The behavior of the Vogel–Fulcher–Tammann (VFT), Avramov and Milchev (AM) and Mauro, Yue, Ellison, Gupta and Allan (MYEGA) functions of viscous flow in relation to t = Tg/(T−To) is analyzed, where Tg is glass transition temperature and To is the temperature in the VFT equation at which the configurational entropy becomes zero. The Tg‐scaled Arrhenius plot (the Angell plot) has been modified. The log η−(Tg/T) relationships in the Angell plot were modified as log η–(Tg)/(T−To) relationships (Tg‐scaled VFT plot). The values of parameter m1 = d(log η)/dt│T=Tg for some silicate and metallic glass‐forming liquids are presented too. The parameter m1 still exhibits “fragility” effect as does the kinetic fragility parameter m = d(log η)/d (Tg/T)│T=Tg in the Angell plot. The plot of log ηVFT in relation to t = Tg/(T−To) is the linear function unlike the Angell plot. The dependences of log ηMYEGA and log ηAM on t are not linear. It is possible to present the dependences of log η as functions of m1 and t in the form of 3D graphs.</abstract><cop>Westerville</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ijag.12062</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2041-1286
ispartof International journal of applied glass science, 2014-06, Vol.5 (2), p.193-205
issn 2041-1286
2041-1294
language eng
recordid cdi_proquest_miscellaneous_1671624668
source Wiley Online Library All Journals
subjects Entropy
Fragility
Glass
Graphs
Liquids
Mathematical analysis
Silicates
Three dimensional
Viscous flow
title Modified Angell Plot of Viscous Flow with Application to Silicate and Metallic Glass-Forming Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Angell%20Plot%20of%20Viscous%20Flow%20with%20Application%20to%20Silicate%20and%20Metallic%20Glass-Forming%20Liquids&rft.jtitle=International%20journal%20of%20applied%20glass%20science&rft.au=Kozmidis-Petrovi%C4%87,%20Ana%20F.&rft.date=2014-06&rft.volume=5&rft.issue=2&rft.spage=193&rft.epage=205&rft.pages=193-205&rft.issn=2041-1286&rft.eissn=2041-1294&rft_id=info:doi/10.1111/ijag.12062&rft_dat=%3Cproquest_cross%3E1671624668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530277929&rft_id=info:pmid/&rfr_iscdi=true