Quantifying force networks in particulate systems
We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and s...
Gespeichert in:
Veröffentlicht in: | Physica. D 2014-08, Vol.283, p.37-55 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | |
container_start_page | 37 |
container_title | Physica. D |
container_volume | 283 |
creator | Kramár, Miroslav Goullet, Arnaud Kondic, Lou Mischaikow, Konstantin |
description | We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and simulations, e.g. digital images, location of the particles, and the forces between the particles, respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations of the geometry captured by these complexes. For each complex we define an associated force network from which persistent homology is computed. Using numerical data obtained from discrete element simulations of a system of particles undergoing slow compression, we demonstrate how persistent homology can be used to compare the force distributions in different systems, and discuss the differences between the properties of digital, position, and interaction force networks. To conclude, we formulate well-defined measures quantifying differences between force networks corresponding to the different states of a system, and therefore allow to analyze in precise terms dynamical properties of force networks.
•We present mathematical models for analyzing force distributions in particulate systems.•Persistent homology is used to compare the force networks in different granular systems.•We consider the stability of the persistence diagrams with respect to experimental error. |
doi_str_mv | 10.1016/j.physd.2014.05.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671624043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278914001158</els_id><sourcerecordid>1671624043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-9b933c0ac02da49e789dd71dbb138ff82517d803d648961e01aaed13813d93c63</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gysiTc2WniDAyo4ktCQkgwW659AZc0KbYDyr_HpcxMN9z73Ol9GDtHKBCwulwX2_cp2IIDlgUsCoDmgM1Q1jyXwPkhm6VUnfNaNsfsJIQ1AGAt6hnD51H30bWT69-ydvCGsp7i9-A_Qub6bKt9dGbsdKQsTCHSJpyyo1Z3gc7-5py93t68LO_zx6e7h-X1Y26ExJg3q0YIA9oAt7psKL22tka7WqGQbSv5AmsrQdiqlE2FBKg12bRDYRthKjFnF_u7Wz98jhSi2rhgqOt0T8MYVCqEFS-hFCkq9lHjhxA8tWrr3Ub7SSGonSC1Vr-C1E6QgoVKghJ1tacotfhy5FUwjnpD1nkyUdnB_cv_AGZkb6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671624043</pqid></control><display><type>article</type><title>Quantifying force networks in particulate systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kramár, Miroslav ; Goullet, Arnaud ; Kondic, Lou ; Mischaikow, Konstantin</creator><creatorcontrib>Kramár, Miroslav ; Goullet, Arnaud ; Kondic, Lou ; Mischaikow, Konstantin</creatorcontrib><description>We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and simulations, e.g. digital images, location of the particles, and the forces between the particles, respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations of the geometry captured by these complexes. For each complex we define an associated force network from which persistent homology is computed. Using numerical data obtained from discrete element simulations of a system of particles undergoing slow compression, we demonstrate how persistent homology can be used to compare the force distributions in different systems, and discuss the differences between the properties of digital, position, and interaction force networks. To conclude, we formulate well-defined measures quantifying differences between force networks corresponding to the different states of a system, and therefore allow to analyze in precise terms dynamical properties of force networks.
•We present mathematical models for analyzing force distributions in particulate systems.•Persistent homology is used to compare the force networks in different granular systems.•We consider the stability of the persistence diagrams with respect to experimental error.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2014.05.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algebra ; Computer simulation ; Digital ; Dynamical systems ; Dynamics ; Force networks ; Homology ; Networks ; Particulate systems ; Persistence diagram ; Position (location)</subject><ispartof>Physica. D, 2014-08, Vol.283, p.37-55</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-9b933c0ac02da49e789dd71dbb138ff82517d803d648961e01aaed13813d93c63</citedby><cites>FETCH-LOGICAL-c381t-9b933c0ac02da49e789dd71dbb138ff82517d803d648961e01aaed13813d93c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physd.2014.05.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kramár, Miroslav</creatorcontrib><creatorcontrib>Goullet, Arnaud</creatorcontrib><creatorcontrib>Kondic, Lou</creatorcontrib><creatorcontrib>Mischaikow, Konstantin</creatorcontrib><title>Quantifying force networks in particulate systems</title><title>Physica. D</title><description>We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and simulations, e.g. digital images, location of the particles, and the forces between the particles, respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations of the geometry captured by these complexes. For each complex we define an associated force network from which persistent homology is computed. Using numerical data obtained from discrete element simulations of a system of particles undergoing slow compression, we demonstrate how persistent homology can be used to compare the force distributions in different systems, and discuss the differences between the properties of digital, position, and interaction force networks. To conclude, we formulate well-defined measures quantifying differences between force networks corresponding to the different states of a system, and therefore allow to analyze in precise terms dynamical properties of force networks.
•We present mathematical models for analyzing force distributions in particulate systems.•Persistent homology is used to compare the force networks in different granular systems.•We consider the stability of the persistence diagrams with respect to experimental error.</description><subject>Algebra</subject><subject>Computer simulation</subject><subject>Digital</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Force networks</subject><subject>Homology</subject><subject>Networks</subject><subject>Particulate systems</subject><subject>Persistence diagram</subject><subject>Position (location)</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gysiTc2WniDAyo4ktCQkgwW659AZc0KbYDyr_HpcxMN9z73Ol9GDtHKBCwulwX2_cp2IIDlgUsCoDmgM1Q1jyXwPkhm6VUnfNaNsfsJIQ1AGAt6hnD51H30bWT69-ydvCGsp7i9-A_Qub6bKt9dGbsdKQsTCHSJpyyo1Z3gc7-5py93t68LO_zx6e7h-X1Y26ExJg3q0YIA9oAt7psKL22tka7WqGQbSv5AmsrQdiqlE2FBKg12bRDYRthKjFnF_u7Wz98jhSi2rhgqOt0T8MYVCqEFS-hFCkq9lHjhxA8tWrr3Ub7SSGonSC1Vr-C1E6QgoVKghJ1tacotfhy5FUwjnpD1nkyUdnB_cv_AGZkb6o</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Kramár, Miroslav</creator><creator>Goullet, Arnaud</creator><creator>Kondic, Lou</creator><creator>Mischaikow, Konstantin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140815</creationdate><title>Quantifying force networks in particulate systems</title><author>Kramár, Miroslav ; Goullet, Arnaud ; Kondic, Lou ; Mischaikow, Konstantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-9b933c0ac02da49e789dd71dbb138ff82517d803d648961e01aaed13813d93c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Computer simulation</topic><topic>Digital</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Force networks</topic><topic>Homology</topic><topic>Networks</topic><topic>Particulate systems</topic><topic>Persistence diagram</topic><topic>Position (location)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kramár, Miroslav</creatorcontrib><creatorcontrib>Goullet, Arnaud</creatorcontrib><creatorcontrib>Kondic, Lou</creatorcontrib><creatorcontrib>Mischaikow, Konstantin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kramár, Miroslav</au><au>Goullet, Arnaud</au><au>Kondic, Lou</au><au>Mischaikow, Konstantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying force networks in particulate systems</atitle><jtitle>Physica. D</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>283</volume><spage>37</spage><epage>55</epage><pages>37-55</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><abstract>We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and simulations, e.g. digital images, location of the particles, and the forces between the particles, respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations of the geometry captured by these complexes. For each complex we define an associated force network from which persistent homology is computed. Using numerical data obtained from discrete element simulations of a system of particles undergoing slow compression, we demonstrate how persistent homology can be used to compare the force distributions in different systems, and discuss the differences between the properties of digital, position, and interaction force networks. To conclude, we formulate well-defined measures quantifying differences between force networks corresponding to the different states of a system, and therefore allow to analyze in precise terms dynamical properties of force networks.
•We present mathematical models for analyzing force distributions in particulate systems.•Persistent homology is used to compare the force networks in different granular systems.•We consider the stability of the persistence diagrams with respect to experimental error.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2014.05.009</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-2789 |
ispartof | Physica. D, 2014-08, Vol.283, p.37-55 |
issn | 0167-2789 1872-8022 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671624043 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Algebra Computer simulation Digital Dynamical systems Dynamics Force networks Homology Networks Particulate systems Persistence diagram Position (location) |
title | Quantifying force networks in particulate systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20force%20networks%20in%20particulate%20systems&rft.jtitle=Physica.%20D&rft.au=Kram%C3%A1r,%20Miroslav&rft.date=2014-08-15&rft.volume=283&rft.spage=37&rft.epage=55&rft.pages=37-55&rft.issn=0167-2789&rft.eissn=1872-8022&rft_id=info:doi/10.1016/j.physd.2014.05.009&rft_dat=%3Cproquest_cross%3E1671624043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671624043&rft_id=info:pmid/&rft_els_id=S0167278914001158&rfr_iscdi=true |