Quantifying force networks in particulate systems

We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2014-08, Vol.283, p.37-55
Hauptverfasser: Kramár, Miroslav, Goullet, Arnaud, Kondic, Lou, Mischaikow, Konstantin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue
container_start_page 37
container_title Physica. D
container_volume 283
creator Kramár, Miroslav
Goullet, Arnaud
Kondic, Lou
Mischaikow, Konstantin
description We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and simulations, e.g. digital images, location of the particles, and the forces between the particles, respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations of the geometry captured by these complexes. For each complex we define an associated force network from which persistent homology is computed. Using numerical data obtained from discrete element simulations of a system of particles undergoing slow compression, we demonstrate how persistent homology can be used to compare the force distributions in different systems, and discuss the differences between the properties of digital, position, and interaction force networks. To conclude, we formulate well-defined measures quantifying differences between force networks corresponding to the different states of a system, and therefore allow to analyze in precise terms dynamical properties of force networks. •We present mathematical models for analyzing force distributions in particulate systems.•Persistent homology is used to compare the force networks in different granular systems.•We consider the stability of the persistence diagrams with respect to experimental error.
doi_str_mv 10.1016/j.physd.2014.05.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671624043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278914001158</els_id><sourcerecordid>1671624043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-9b933c0ac02da49e789dd71dbb138ff82517d803d648961e01aaed13813d93c63</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gysiTc2WniDAyo4ktCQkgwW659AZc0KbYDyr_HpcxMN9z73Ol9GDtHKBCwulwX2_cp2IIDlgUsCoDmgM1Q1jyXwPkhm6VUnfNaNsfsJIQ1AGAt6hnD51H30bWT69-ydvCGsp7i9-A_Qub6bKt9dGbsdKQsTCHSJpyyo1Z3gc7-5py93t68LO_zx6e7h-X1Y26ExJg3q0YIA9oAt7psKL22tka7WqGQbSv5AmsrQdiqlE2FBKg12bRDYRthKjFnF_u7Wz98jhSi2rhgqOt0T8MYVCqEFS-hFCkq9lHjhxA8tWrr3Ub7SSGonSC1Vr-C1E6QgoVKghJ1tacotfhy5FUwjnpD1nkyUdnB_cv_AGZkb6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671624043</pqid></control><display><type>article</type><title>Quantifying force networks in particulate systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kramár, Miroslav ; Goullet, Arnaud ; Kondic, Lou ; Mischaikow, Konstantin</creator><creatorcontrib>Kramár, Miroslav ; Goullet, Arnaud ; Kondic, Lou ; Mischaikow, Konstantin</creatorcontrib><description>We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and simulations, e.g. digital images, location of the particles, and the forces between the particles, respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations of the geometry captured by these complexes. For each complex we define an associated force network from which persistent homology is computed. Using numerical data obtained from discrete element simulations of a system of particles undergoing slow compression, we demonstrate how persistent homology can be used to compare the force distributions in different systems, and discuss the differences between the properties of digital, position, and interaction force networks. To conclude, we formulate well-defined measures quantifying differences between force networks corresponding to the different states of a system, and therefore allow to analyze in precise terms dynamical properties of force networks. •We present mathematical models for analyzing force distributions in particulate systems.•Persistent homology is used to compare the force networks in different granular systems.•We consider the stability of the persistence diagrams with respect to experimental error.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2014.05.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algebra ; Computer simulation ; Digital ; Dynamical systems ; Dynamics ; Force networks ; Homology ; Networks ; Particulate systems ; Persistence diagram ; Position (location)</subject><ispartof>Physica. D, 2014-08, Vol.283, p.37-55</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-9b933c0ac02da49e789dd71dbb138ff82517d803d648961e01aaed13813d93c63</citedby><cites>FETCH-LOGICAL-c381t-9b933c0ac02da49e789dd71dbb138ff82517d803d648961e01aaed13813d93c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physd.2014.05.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kramár, Miroslav</creatorcontrib><creatorcontrib>Goullet, Arnaud</creatorcontrib><creatorcontrib>Kondic, Lou</creatorcontrib><creatorcontrib>Mischaikow, Konstantin</creatorcontrib><title>Quantifying force networks in particulate systems</title><title>Physica. D</title><description>We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and simulations, e.g. digital images, location of the particles, and the forces between the particles, respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations of the geometry captured by these complexes. For each complex we define an associated force network from which persistent homology is computed. Using numerical data obtained from discrete element simulations of a system of particles undergoing slow compression, we demonstrate how persistent homology can be used to compare the force distributions in different systems, and discuss the differences between the properties of digital, position, and interaction force networks. To conclude, we formulate well-defined measures quantifying differences between force networks corresponding to the different states of a system, and therefore allow to analyze in precise terms dynamical properties of force networks. •We present mathematical models for analyzing force distributions in particulate systems.•Persistent homology is used to compare the force networks in different granular systems.•We consider the stability of the persistence diagrams with respect to experimental error.</description><subject>Algebra</subject><subject>Computer simulation</subject><subject>Digital</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Force networks</subject><subject>Homology</subject><subject>Networks</subject><subject>Particulate systems</subject><subject>Persistence diagram</subject><subject>Position (location)</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gysiTc2WniDAyo4ktCQkgwW659AZc0KbYDyr_HpcxMN9z73Ol9GDtHKBCwulwX2_cp2IIDlgUsCoDmgM1Q1jyXwPkhm6VUnfNaNsfsJIQ1AGAt6hnD51H30bWT69-ydvCGsp7i9-A_Qub6bKt9dGbsdKQsTCHSJpyyo1Z3gc7-5py93t68LO_zx6e7h-X1Y26ExJg3q0YIA9oAt7psKL22tka7WqGQbSv5AmsrQdiqlE2FBKg12bRDYRthKjFnF_u7Wz98jhSi2rhgqOt0T8MYVCqEFS-hFCkq9lHjhxA8tWrr3Ub7SSGonSC1Vr-C1E6QgoVKghJ1tacotfhy5FUwjnpD1nkyUdnB_cv_AGZkb6o</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Kramár, Miroslav</creator><creator>Goullet, Arnaud</creator><creator>Kondic, Lou</creator><creator>Mischaikow, Konstantin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140815</creationdate><title>Quantifying force networks in particulate systems</title><author>Kramár, Miroslav ; Goullet, Arnaud ; Kondic, Lou ; Mischaikow, Konstantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-9b933c0ac02da49e789dd71dbb138ff82517d803d648961e01aaed13813d93c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Computer simulation</topic><topic>Digital</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Force networks</topic><topic>Homology</topic><topic>Networks</topic><topic>Particulate systems</topic><topic>Persistence diagram</topic><topic>Position (location)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kramár, Miroslav</creatorcontrib><creatorcontrib>Goullet, Arnaud</creatorcontrib><creatorcontrib>Kondic, Lou</creatorcontrib><creatorcontrib>Mischaikow, Konstantin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kramár, Miroslav</au><au>Goullet, Arnaud</au><au>Kondic, Lou</au><au>Mischaikow, Konstantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying force networks in particulate systems</atitle><jtitle>Physica. D</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>283</volume><spage>37</spage><epage>55</epage><pages>37-55</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><abstract>We present mathematical models based on persistent homology for analyzing force distributions in particulate systems. We define three distinct chain complexes of these distributions: digital, position, and interaction, motivated by different types of data that may be available from experiments and simulations, e.g. digital images, location of the particles, and the forces between the particles, respectively. We describe how algebraic topology, in particular, homology allows one to obtain algebraic representations of the geometry captured by these complexes. For each complex we define an associated force network from which persistent homology is computed. Using numerical data obtained from discrete element simulations of a system of particles undergoing slow compression, we demonstrate how persistent homology can be used to compare the force distributions in different systems, and discuss the differences between the properties of digital, position, and interaction force networks. To conclude, we formulate well-defined measures quantifying differences between force networks corresponding to the different states of a system, and therefore allow to analyze in precise terms dynamical properties of force networks. •We present mathematical models for analyzing force distributions in particulate systems.•Persistent homology is used to compare the force networks in different granular systems.•We consider the stability of the persistence diagrams with respect to experimental error.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2014.05.009</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2014-08, Vol.283, p.37-55
issn 0167-2789
1872-8022
language eng
recordid cdi_proquest_miscellaneous_1671624043
source ScienceDirect Journals (5 years ago - present)
subjects Algebra
Computer simulation
Digital
Dynamical systems
Dynamics
Force networks
Homology
Networks
Particulate systems
Persistence diagram
Position (location)
title Quantifying force networks in particulate systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20force%20networks%20in%20particulate%20systems&rft.jtitle=Physica.%20D&rft.au=Kram%C3%A1r,%20Miroslav&rft.date=2014-08-15&rft.volume=283&rft.spage=37&rft.epage=55&rft.pages=37-55&rft.issn=0167-2789&rft.eissn=1872-8022&rft_id=info:doi/10.1016/j.physd.2014.05.009&rft_dat=%3Cproquest_cross%3E1671624043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671624043&rft_id=info:pmid/&rft_els_id=S0167278914001158&rfr_iscdi=true