Perturbation of Yamabe Equation on Iwasawa N Groups in Presence of Symmetry

Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subellipt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2010-08, Vol.26 (8), p.1575-1590
1. Verfasser: Yang, Qiao Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1590
container_issue 8
container_start_page 1575
container_title Acta mathematica Sinica. English series
container_volume 26
creator Yang, Qiao Hua
description Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry.
doi_str_mv 10.1007/s10114-010-7377-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671623713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34520474</cqvip_id><sourcerecordid>1671623713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6304db98329b8ff38bb8ba8fe92e0bc14378b872a30d979275a43dfc283b56053</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhosoOKc_wFvw5KX6JWmT9ChjzuHQgXrwFJIsnZ1rsyUtY__elhYED57yEZ735eWJomsMdxiA3wcMGCcxYIg55TymJ9EIJzSLOcP8dLhFitl5dBHCBiBNM2Cj6Hlpfd14rerCVcjl6FOVSls03TfDV4XmBxXUQaEXNPOu2QVUVGjpbbCVsV3k7ViWtvbHy-gsV9tgr4Z3HH08Tt8nT_HidTafPCxiQwmvY0YhWelMUJJpkedUaC20ErnNiAVt2qVcaMGJorDKeEZ4qhK6yg0RVKcMUjqObvvenXf7xoZalkUwdrtVlXVNkJhxzAjlmLbozR904xpfteskA5FwwgW0EO4h410I3uZy54tS-aPEIDu7srcrW7uysyu7YtJnQstWa-t_i_8LDWvMl6vW-zYntTLfebG1kiYpgYQn9AfJXoZP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>608472780</pqid></control><display><type>article</type><title>Perturbation of Yamabe Equation on Iwasawa N Groups in Presence of Symmetry</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Qiao Hua</creator><creatorcontrib>Yang, Qiao Hua</creatorcontrib><description>Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-010-7377-3</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Algebra ; Decomposition ; Lie groups ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Perturbation methods ; Studies ; Symmetry ; 对称性 ; 次椭圆 ; 非线性方程</subject><ispartof>Acta mathematica Sinica. English series, 2010-08, Vol.26 (8), p.1575-1590</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-6304db98329b8ff38bb8ba8fe92e0bc14378b872a30d979275a43dfc283b56053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-010-7377-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-010-7377-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Qiao Hua</creatorcontrib><title>Perturbation of Yamabe Equation on Iwasawa N Groups in Presence of Symmetry</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry.</description><subject>Algebra</subject><subject>Decomposition</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Perturbation methods</subject><subject>Studies</subject><subject>Symmetry</subject><subject>对称性</subject><subject>次椭圆</subject><subject>非线性方程</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFLwzAYhosoOKc_wFvw5KX6JWmT9ChjzuHQgXrwFJIsnZ1rsyUtY__elhYED57yEZ735eWJomsMdxiA3wcMGCcxYIg55TymJ9EIJzSLOcP8dLhFitl5dBHCBiBNM2Cj6Hlpfd14rerCVcjl6FOVSls03TfDV4XmBxXUQaEXNPOu2QVUVGjpbbCVsV3k7ViWtvbHy-gsV9tgr4Z3HH08Tt8nT_HidTafPCxiQwmvY0YhWelMUJJpkedUaC20ErnNiAVt2qVcaMGJorDKeEZ4qhK6yg0RVKcMUjqObvvenXf7xoZalkUwdrtVlXVNkJhxzAjlmLbozR904xpfteskA5FwwgW0EO4h410I3uZy54tS-aPEIDu7srcrW7uysyu7YtJnQstWa-t_i_8LDWvMl6vW-zYntTLfebG1kiYpgYQn9AfJXoZP</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Yang, Qiao Hua</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100801</creationdate><title>Perturbation of Yamabe Equation on Iwasawa N Groups in Presence of Symmetry</title><author>Yang, Qiao Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6304db98329b8ff38bb8ba8fe92e0bc14378b872a30d979275a43dfc283b56053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Decomposition</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Perturbation methods</topic><topic>Studies</topic><topic>Symmetry</topic><topic>对称性</topic><topic>次椭圆</topic><topic>非线性方程</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qiao Hua</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qiao Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation of Yamabe Equation on Iwasawa N Groups in Presence of Symmetry</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>26</volume><issue>8</issue><spage>1575</spage><epage>1590</epage><pages>1575-1590</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-010-7377-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2010-08, Vol.26 (8), p.1575-1590
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_miscellaneous_1671623713
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Algebra
Decomposition
Lie groups
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear equations
Perturbation methods
Studies
Symmetry
对称性
次椭圆
非线性方程
title Perturbation of Yamabe Equation on Iwasawa N Groups in Presence of Symmetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation%20of%20Yamabe%20Equation%20on%20Iwasawa%20N%20Groups%20in%20Presence%20of%20Symmetry&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Yang,%20Qiao%20Hua&rft.date=2010-08-01&rft.volume=26&rft.issue=8&rft.spage=1575&rft.epage=1590&rft.pages=1575-1590&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-010-7377-3&rft_dat=%3Cproquest_cross%3E1671623713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=608472780&rft_id=info:pmid/&rft_cqvip_id=34520474&rfr_iscdi=true