Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement
The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a prono...
Gespeichert in:
Veröffentlicht in: | Journal of luminescence 2013-03, Vol.135, p.120-127 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | |
container_start_page | 120 |
container_title | Journal of luminescence |
container_volume | 135 |
creator | Niculescu, E.C. Cristea, M. |
description | The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a pronounced redshift of the impurity energy under low dielectric constant environment due to the predominance of the effective Coulomb term over the self-interaction potential. For particular donor positions the resonant peak of the photoionization cross-section is strongly enhanced as a result of the dielectric confinement-induced changes in the electronic states. The tuning of the nanodot optical properties can be also achieved by an applied electric field which allows a red- or blue-shift of the threshold energy for the impurity photoionization.
► Electric field effect on the impurity states in core–shell quantum dots is studied. ► Electron cloud of the on-edge impurity is strongly distorted by the electric field. ► A pronounced redshift of the donor energy under low dielectric environment is found. ► Dielectric mismatch causes an increase of the photoionization cross-section. ► Photoionization cross-section depends on the donor position and electric field. |
doi_str_mv | 10.1016/j.jlumin.2012.10.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671622261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022231312006187</els_id><sourcerecordid>1671622261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-ec06313b4006f620aba2c580e7a8ee64dbd0da2cb2a99ab883bbb76cac5b4ec43</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWH_ewEU2gptpk8w0M7MRpPgHggt14ybk5w5NmUlqkiq68h18Q5_E1BaXri45nJN7z4fQCSVjSiifLMaLfjVYN2aEsiyNScl20Ig2NSvqpil30YgQxgpW0nIfHcS4IISUbdOOkL8dlqtg0zuOSSaIWDqDl3OfvPXOfsiUB9bBx4gj6N-XdXhmHmDy7B6w9gG-P7_iHPoeO-m88SniN5vm2FjocyJYnV2usw4GcOkI7XWyj3C8nYfo6erycXZT3N1f384u7gpd8jYVoAnPx6qKEN5xRqSSTE8bArVsAHhllCEmS4rJtpUqd1RK1VxLPVUV6Ko8RGebf5fBv6wgJjHYqPOV0oFfRUF5TTljjNNsrTbW35oBOrEMdpDhXVAi1nzFQmz4ijXftZr55tjpdoOMWvZdkE7b-JdlvK2njJbZd77xQa77aiGIqC04DcaGzEcYb_9f9AON45cM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671622261</pqid></control><display><type>article</type><title>Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement</title><source>Access via ScienceDirect (Elsevier)</source><creator>Niculescu, E.C. ; Cristea, M.</creator><creatorcontrib>Niculescu, E.C. ; Cristea, M.</creatorcontrib><description>The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a pronounced redshift of the impurity energy under low dielectric constant environment due to the predominance of the effective Coulomb term over the self-interaction potential. For particular donor positions the resonant peak of the photoionization cross-section is strongly enhanced as a result of the dielectric confinement-induced changes in the electronic states. The tuning of the nanodot optical properties can be also achieved by an applied electric field which allows a red- or blue-shift of the threshold energy for the impurity photoionization.
► Electric field effect on the impurity states in core–shell quantum dots is studied. ► Electron cloud of the on-edge impurity is strongly distorted by the electric field. ► A pronounced redshift of the donor energy under low dielectric environment is found. ► Dielectric mismatch causes an increase of the photoionization cross-section. ► Photoionization cross-section depends on the donor position and electric field.</description><identifier>ISSN: 0022-2313</identifier><identifier>EISSN: 1872-7883</identifier><identifier>DOI: 10.1016/j.jlumin.2012.10.032</identifier><identifier>CODEN: JLUMA8</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cadmium selenides ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Core–shell quantum dot ; Cross sections ; Cross-disciplinary physics: materials science; rheology ; Dielectric confinement ; Dielectric properties of solids and liquids ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Electric field ; Electric fields ; Electron states ; Exact sciences and technology ; Hydrogenic donor ; Impurities ; Intermetallics ; Materials science ; Methods of electronic structure calculations ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Permittivity (dielectric function) ; Photoionization ; Physics ; Quantum dots ; Zinc sulfides</subject><ispartof>Journal of luminescence, 2013-03, Vol.135, p.120-127</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-ec06313b4006f620aba2c580e7a8ee64dbd0da2cb2a99ab883bbb76cac5b4ec43</citedby><cites>FETCH-LOGICAL-c369t-ec06313b4006f620aba2c580e7a8ee64dbd0da2cb2a99ab883bbb76cac5b4ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jlumin.2012.10.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26975213$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Niculescu, E.C.</creatorcontrib><creatorcontrib>Cristea, M.</creatorcontrib><title>Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement</title><title>Journal of luminescence</title><description>The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a pronounced redshift of the impurity energy under low dielectric constant environment due to the predominance of the effective Coulomb term over the self-interaction potential. For particular donor positions the resonant peak of the photoionization cross-section is strongly enhanced as a result of the dielectric confinement-induced changes in the electronic states. The tuning of the nanodot optical properties can be also achieved by an applied electric field which allows a red- or blue-shift of the threshold energy for the impurity photoionization.
► Electric field effect on the impurity states in core–shell quantum dots is studied. ► Electron cloud of the on-edge impurity is strongly distorted by the electric field. ► A pronounced redshift of the donor energy under low dielectric environment is found. ► Dielectric mismatch causes an increase of the photoionization cross-section. ► Photoionization cross-section depends on the donor position and electric field.</description><subject>Cadmium selenides</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Core–shell quantum dot</subject><subject>Cross sections</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dielectric confinement</subject><subject>Dielectric properties of solids and liquids</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Hydrogenic donor</subject><subject>Impurities</subject><subject>Intermetallics</subject><subject>Materials science</subject><subject>Methods of electronic structure calculations</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Permittivity (dielectric function)</subject><subject>Photoionization</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Zinc sulfides</subject><issn>0022-2313</issn><issn>1872-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWH_ewEU2gptpk8w0M7MRpPgHggt14ybk5w5NmUlqkiq68h18Q5_E1BaXri45nJN7z4fQCSVjSiifLMaLfjVYN2aEsiyNScl20Ig2NSvqpil30YgQxgpW0nIfHcS4IISUbdOOkL8dlqtg0zuOSSaIWDqDl3OfvPXOfsiUB9bBx4gj6N-XdXhmHmDy7B6w9gG-P7_iHPoeO-m88SniN5vm2FjocyJYnV2usw4GcOkI7XWyj3C8nYfo6erycXZT3N1f384u7gpd8jYVoAnPx6qKEN5xRqSSTE8bArVsAHhllCEmS4rJtpUqd1RK1VxLPVUV6Ko8RGebf5fBv6wgJjHYqPOV0oFfRUF5TTljjNNsrTbW35oBOrEMdpDhXVAi1nzFQmz4ijXftZr55tjpdoOMWvZdkE7b-JdlvK2njJbZd77xQa77aiGIqC04DcaGzEcYb_9f9AON45cM</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Niculescu, E.C.</creator><creator>Cristea, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement</title><author>Niculescu, E.C. ; Cristea, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-ec06313b4006f620aba2c580e7a8ee64dbd0da2cb2a99ab883bbb76cac5b4ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cadmium selenides</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Core–shell quantum dot</topic><topic>Cross sections</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dielectric confinement</topic><topic>Dielectric properties of solids and liquids</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Hydrogenic donor</topic><topic>Impurities</topic><topic>Intermetallics</topic><topic>Materials science</topic><topic>Methods of electronic structure calculations</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Permittivity (dielectric function)</topic><topic>Photoionization</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Zinc sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niculescu, E.C.</creatorcontrib><creatorcontrib>Cristea, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of luminescence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niculescu, E.C.</au><au>Cristea, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement</atitle><jtitle>Journal of luminescence</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>135</volume><spage>120</spage><epage>127</epage><pages>120-127</pages><issn>0022-2313</issn><eissn>1872-7883</eissn><coden>JLUMA8</coden><abstract>The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a pronounced redshift of the impurity energy under low dielectric constant environment due to the predominance of the effective Coulomb term over the self-interaction potential. For particular donor positions the resonant peak of the photoionization cross-section is strongly enhanced as a result of the dielectric confinement-induced changes in the electronic states. The tuning of the nanodot optical properties can be also achieved by an applied electric field which allows a red- or blue-shift of the threshold energy for the impurity photoionization.
► Electric field effect on the impurity states in core–shell quantum dots is studied. ► Electron cloud of the on-edge impurity is strongly distorted by the electric field. ► A pronounced redshift of the donor energy under low dielectric environment is found. ► Dielectric mismatch causes an increase of the photoionization cross-section. ► Photoionization cross-section depends on the donor position and electric field.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jlumin.2012.10.032</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2313 |
ispartof | Journal of luminescence, 2013-03, Vol.135, p.120-127 |
issn | 0022-2313 1872-7883 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671622261 |
source | Access via ScienceDirect (Elsevier) |
subjects | Cadmium selenides Condensed matter: electronic structure, electrical, magnetic, and optical properties Core–shell quantum dot Cross sections Cross-disciplinary physics: materials science rheology Dielectric confinement Dielectric properties of solids and liquids Dielectrics, piezoelectrics, and ferroelectrics and their properties Electric field Electric fields Electron states Exact sciences and technology Hydrogenic donor Impurities Intermetallics Materials science Methods of electronic structure calculations Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Permittivity (dielectric function) Photoionization Physics Quantum dots Zinc sulfides |
title | Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impurity%20states%20and%20photoionization%20cross%20section%20in%20CdSe/ZnS%20core%E2%80%93shell%20nanodots%20with%20dielectric%20confinement&rft.jtitle=Journal%20of%20luminescence&rft.au=Niculescu,%20E.C.&rft.date=2013-03-01&rft.volume=135&rft.spage=120&rft.epage=127&rft.pages=120-127&rft.issn=0022-2313&rft.eissn=1872-7883&rft.coden=JLUMA8&rft_id=info:doi/10.1016/j.jlumin.2012.10.032&rft_dat=%3Cproquest_cross%3E1671622261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671622261&rft_id=info:pmid/&rft_els_id=S0022231312006187&rfr_iscdi=true |