Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement

The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a prono...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of luminescence 2013-03, Vol.135, p.120-127
Hauptverfasser: Niculescu, E.C., Cristea, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue
container_start_page 120
container_title Journal of luminescence
container_volume 135
creator Niculescu, E.C.
Cristea, M.
description The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a pronounced redshift of the impurity energy under low dielectric constant environment due to the predominance of the effective Coulomb term over the self-interaction potential. For particular donor positions the resonant peak of the photoionization cross-section is strongly enhanced as a result of the dielectric confinement-induced changes in the electronic states. The tuning of the nanodot optical properties can be also achieved by an applied electric field which allows a red- or blue-shift of the threshold energy for the impurity photoionization. ► Electric field effect on the impurity states in core–shell quantum dots is studied. ► Electron cloud of the on-edge impurity is strongly distorted by the electric field. ► A pronounced redshift of the donor energy under low dielectric environment is found. ► Dielectric mismatch causes an increase of the photoionization cross-section. ► Photoionization cross-section depends on the donor position and electric field.
doi_str_mv 10.1016/j.jlumin.2012.10.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671622261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022231312006187</els_id><sourcerecordid>1671622261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-ec06313b4006f620aba2c580e7a8ee64dbd0da2cb2a99ab883bbb76cac5b4ec43</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWH_ewEU2gptpk8w0M7MRpPgHggt14ybk5w5NmUlqkiq68h18Q5_E1BaXri45nJN7z4fQCSVjSiifLMaLfjVYN2aEsiyNScl20Ig2NSvqpil30YgQxgpW0nIfHcS4IISUbdOOkL8dlqtg0zuOSSaIWDqDl3OfvPXOfsiUB9bBx4gj6N-XdXhmHmDy7B6w9gG-P7_iHPoeO-m88SniN5vm2FjocyJYnV2usw4GcOkI7XWyj3C8nYfo6erycXZT3N1f384u7gpd8jYVoAnPx6qKEN5xRqSSTE8bArVsAHhllCEmS4rJtpUqd1RK1VxLPVUV6Ko8RGebf5fBv6wgJjHYqPOV0oFfRUF5TTljjNNsrTbW35oBOrEMdpDhXVAi1nzFQmz4ijXftZr55tjpdoOMWvZdkE7b-JdlvK2njJbZd77xQa77aiGIqC04DcaGzEcYb_9f9AON45cM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671622261</pqid></control><display><type>article</type><title>Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement</title><source>Access via ScienceDirect (Elsevier)</source><creator>Niculescu, E.C. ; Cristea, M.</creator><creatorcontrib>Niculescu, E.C. ; Cristea, M.</creatorcontrib><description>The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a pronounced redshift of the impurity energy under low dielectric constant environment due to the predominance of the effective Coulomb term over the self-interaction potential. For particular donor positions the resonant peak of the photoionization cross-section is strongly enhanced as a result of the dielectric confinement-induced changes in the electronic states. The tuning of the nanodot optical properties can be also achieved by an applied electric field which allows a red- or blue-shift of the threshold energy for the impurity photoionization. ► Electric field effect on the impurity states in core–shell quantum dots is studied. ► Electron cloud of the on-edge impurity is strongly distorted by the electric field. ► A pronounced redshift of the donor energy under low dielectric environment is found. ► Dielectric mismatch causes an increase of the photoionization cross-section. ► Photoionization cross-section depends on the donor position and electric field.</description><identifier>ISSN: 0022-2313</identifier><identifier>EISSN: 1872-7883</identifier><identifier>DOI: 10.1016/j.jlumin.2012.10.032</identifier><identifier>CODEN: JLUMA8</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cadmium selenides ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Core–shell quantum dot ; Cross sections ; Cross-disciplinary physics: materials science; rheology ; Dielectric confinement ; Dielectric properties of solids and liquids ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Electric field ; Electric fields ; Electron states ; Exact sciences and technology ; Hydrogenic donor ; Impurities ; Intermetallics ; Materials science ; Methods of electronic structure calculations ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Permittivity (dielectric function) ; Photoionization ; Physics ; Quantum dots ; Zinc sulfides</subject><ispartof>Journal of luminescence, 2013-03, Vol.135, p.120-127</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-ec06313b4006f620aba2c580e7a8ee64dbd0da2cb2a99ab883bbb76cac5b4ec43</citedby><cites>FETCH-LOGICAL-c369t-ec06313b4006f620aba2c580e7a8ee64dbd0da2cb2a99ab883bbb76cac5b4ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jlumin.2012.10.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26975213$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Niculescu, E.C.</creatorcontrib><creatorcontrib>Cristea, M.</creatorcontrib><title>Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement</title><title>Journal of luminescence</title><description>The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a pronounced redshift of the impurity energy under low dielectric constant environment due to the predominance of the effective Coulomb term over the self-interaction potential. For particular donor positions the resonant peak of the photoionization cross-section is strongly enhanced as a result of the dielectric confinement-induced changes in the electronic states. The tuning of the nanodot optical properties can be also achieved by an applied electric field which allows a red- or blue-shift of the threshold energy for the impurity photoionization. ► Electric field effect on the impurity states in core–shell quantum dots is studied. ► Electron cloud of the on-edge impurity is strongly distorted by the electric field. ► A pronounced redshift of the donor energy under low dielectric environment is found. ► Dielectric mismatch causes an increase of the photoionization cross-section. ► Photoionization cross-section depends on the donor position and electric field.</description><subject>Cadmium selenides</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Core–shell quantum dot</subject><subject>Cross sections</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dielectric confinement</subject><subject>Dielectric properties of solids and liquids</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Hydrogenic donor</subject><subject>Impurities</subject><subject>Intermetallics</subject><subject>Materials science</subject><subject>Methods of electronic structure calculations</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Permittivity (dielectric function)</subject><subject>Photoionization</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Zinc sulfides</subject><issn>0022-2313</issn><issn>1872-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWH_ewEU2gptpk8w0M7MRpPgHggt14ybk5w5NmUlqkiq68h18Q5_E1BaXri45nJN7z4fQCSVjSiifLMaLfjVYN2aEsiyNScl20Ig2NSvqpil30YgQxgpW0nIfHcS4IISUbdOOkL8dlqtg0zuOSSaIWDqDl3OfvPXOfsiUB9bBx4gj6N-XdXhmHmDy7B6w9gG-P7_iHPoeO-m88SniN5vm2FjocyJYnV2usw4GcOkI7XWyj3C8nYfo6erycXZT3N1f384u7gpd8jYVoAnPx6qKEN5xRqSSTE8bArVsAHhllCEmS4rJtpUqd1RK1VxLPVUV6Ko8RGebf5fBv6wgJjHYqPOV0oFfRUF5TTljjNNsrTbW35oBOrEMdpDhXVAi1nzFQmz4ijXftZr55tjpdoOMWvZdkE7b-JdlvK2njJbZd77xQa77aiGIqC04DcaGzEcYb_9f9AON45cM</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Niculescu, E.C.</creator><creator>Cristea, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement</title><author>Niculescu, E.C. ; Cristea, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-ec06313b4006f620aba2c580e7a8ee64dbd0da2cb2a99ab883bbb76cac5b4ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cadmium selenides</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Core–shell quantum dot</topic><topic>Cross sections</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dielectric confinement</topic><topic>Dielectric properties of solids and liquids</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Hydrogenic donor</topic><topic>Impurities</topic><topic>Intermetallics</topic><topic>Materials science</topic><topic>Methods of electronic structure calculations</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Permittivity (dielectric function)</topic><topic>Photoionization</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Zinc sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niculescu, E.C.</creatorcontrib><creatorcontrib>Cristea, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of luminescence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niculescu, E.C.</au><au>Cristea, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement</atitle><jtitle>Journal of luminescence</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>135</volume><spage>120</spage><epage>127</epage><pages>120-127</pages><issn>0022-2313</issn><eissn>1872-7883</eissn><coden>JLUMA8</coden><abstract>The effects of the electric field and impurity position on the ground and lowest excited states of a hydrogenic donor in the core–shell CdSe/ZnS quantum dot are studied within the effective mass approximation, taking into account the polarization charges at the nanocrystal boundary. We found a pronounced redshift of the impurity energy under low dielectric constant environment due to the predominance of the effective Coulomb term over the self-interaction potential. For particular donor positions the resonant peak of the photoionization cross-section is strongly enhanced as a result of the dielectric confinement-induced changes in the electronic states. The tuning of the nanodot optical properties can be also achieved by an applied electric field which allows a red- or blue-shift of the threshold energy for the impurity photoionization. ► Electric field effect on the impurity states in core–shell quantum dots is studied. ► Electron cloud of the on-edge impurity is strongly distorted by the electric field. ► A pronounced redshift of the donor energy under low dielectric environment is found. ► Dielectric mismatch causes an increase of the photoionization cross-section. ► Photoionization cross-section depends on the donor position and electric field.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jlumin.2012.10.032</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2313
ispartof Journal of luminescence, 2013-03, Vol.135, p.120-127
issn 0022-2313
1872-7883
language eng
recordid cdi_proquest_miscellaneous_1671622261
source Access via ScienceDirect (Elsevier)
subjects Cadmium selenides
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Core–shell quantum dot
Cross sections
Cross-disciplinary physics: materials science
rheology
Dielectric confinement
Dielectric properties of solids and liquids
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Electric field
Electric fields
Electron states
Exact sciences and technology
Hydrogenic donor
Impurities
Intermetallics
Materials science
Methods of electronic structure calculations
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Permittivity (dielectric function)
Photoionization
Physics
Quantum dots
Zinc sulfides
title Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impurity%20states%20and%20photoionization%20cross%20section%20in%20CdSe/ZnS%20core%E2%80%93shell%20nanodots%20with%20dielectric%20confinement&rft.jtitle=Journal%20of%20luminescence&rft.au=Niculescu,%20E.C.&rft.date=2013-03-01&rft.volume=135&rft.spage=120&rft.epage=127&rft.pages=120-127&rft.issn=0022-2313&rft.eissn=1872-7883&rft.coden=JLUMA8&rft_id=info:doi/10.1016/j.jlumin.2012.10.032&rft_dat=%3Cproquest_cross%3E1671622261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671622261&rft_id=info:pmid/&rft_els_id=S0022231312006187&rfr_iscdi=true