Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes

A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2012-10, Vol.46 (16), p.5009-5018
Hauptverfasser: Bäuerlein, Patrick S., ter Laak, Thomas L., Hofman-Caris, Roberta C.H.M., de Voogt, Pim, Droge, Steven T.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5018
container_issue 16
container_start_page 5009
container_title Water research (Oxford)
container_volume 46
creator Bäuerlein, Patrick S.
ter Laak, Thomas L.
Hofman-Caris, Roberta C.H.M.
de Voogt, Pim
Droge, Steven T.J.
description A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H2O2, activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca2+ solutions compared to similar concentrations of Na+, while that of anionic compounds is three fold weaker in SO42- solutions compared to equal concentrations of Cl−. [Display omitted] ► We show the influence of different inorganic ions on the sorption of organic ions. ► Column experiments are used to evaluate in the influence of the different salts. ► Ion-exchange materials can be a useful material in water treatment in combination with AC.
doi_str_mv 10.1016/j.watres.2012.06.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671621678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135412004769</els_id><sourcerecordid>1069195027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-64748842127ab5b14c10e33df1e3e3a727f7f287f45bfbdf264c10de75431d953</originalsourceid><addsrcrecordid>eNqN0t2K1DAUB_Agijs7-gaiuRH2pjVfbdIbYVnWD1gQ1L0OaXsyZmibMemszp3v4Bv6JJ6ho96pNwmE3zkn5B9CnnBWcsbrF9vyi5sT5FIwLkpWl0yZe2TFjW4KoZS5T1aMKVlwWakzcp7zljEmhGwekjMhDDdNJVZkeA9jvHMDjZ52n1zaQE_H0KW4i8Own900Z-pTHCkOg0TbAw1xKuAr2mkDFNVhhJTpj2_f6bX30KE_torjDuYwbSgMeJaQzZAfkQfeDRken_Y1uX11_fHqTXHz7vXbq8ubolNGzEWttDJGCS60a6uWq44zkLL3HCRIp4X22gujvapa3_Ze1EfRg66U5H1TyTW5WPruUvy8hzzbMeQOhsFNEPfZ8lrzWuBq_k1Z3fCmYkL_B5UNUwwtUrVQfMicE3i7S2F06YDIHtOzW7ukZ4_pWVZbTA_Lnp4m7NsR-t9Fv-JC8PwEXO7c4JObupD_uFpKzSRD92xx3kXrNgnN7QecVOEXYA3Hb7EmLxcBmMNdgGRzF2DqoA8JA7N9DH-_609PP8Q1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039040502</pqid></control><display><type>article</type><title>Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bäuerlein, Patrick S. ; ter Laak, Thomas L. ; Hofman-Caris, Roberta C.H.M. ; de Voogt, Pim ; Droge, Steven T.J.</creator><creatorcontrib>Bäuerlein, Patrick S. ; ter Laak, Thomas L. ; Hofman-Caris, Roberta C.H.M. ; de Voogt, Pim ; Droge, Steven T.J.</creatorcontrib><description>A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H2O2, activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca2+ solutions compared to similar concentrations of Na+, while that of anionic compounds is three fold weaker in SO42- solutions compared to equal concentrations of Cl−. [Display omitted] ► We show the influence of different inorganic ions on the sorption of organic ions. ► Column experiments are used to evaluate in the influence of the different salts. ► Ion-exchange materials can be a useful material in water treatment in combination with AC.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2012.06.048</identifier><identifier>PMID: 22818952</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>acids ; Activated carbon ; Adsorption ; Affinity ; Alternating current ; Applied sciences ; calcium ; Cations ; Cations - chemistry ; Charging ; chlorides ; Drinking water ; Drinking Water - analysis ; Electrolytes ; Electrolytes - chemistry ; Exact sciences and technology ; illicit drugs ; inorganic ions ; ion exchange ; Ion Exchange Resins - chemistry ; Ion-exchange polymers ; Ionic pollutants ; Metformin ; Models, Chemical ; Pollution ; Polymers ; salt concentration ; sodium ; Sorption ; Water Pollutants, Chemical - isolation &amp; purification ; Water Purification - methods ; Water treatment ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2012-10, Vol.46 (16), p.5009-5018</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-64748842127ab5b14c10e33df1e3e3a727f7f287f45bfbdf264c10de75431d953</citedby><cites>FETCH-LOGICAL-c482t-64748842127ab5b14c10e33df1e3e3a727f7f287f45bfbdf264c10de75431d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2012.06.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26337030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22818952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bäuerlein, Patrick S.</creatorcontrib><creatorcontrib>ter Laak, Thomas L.</creatorcontrib><creatorcontrib>Hofman-Caris, Roberta C.H.M.</creatorcontrib><creatorcontrib>de Voogt, Pim</creatorcontrib><creatorcontrib>Droge, Steven T.J.</creatorcontrib><title>Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H2O2, activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca2+ solutions compared to similar concentrations of Na+, while that of anionic compounds is three fold weaker in SO42- solutions compared to equal concentrations of Cl−. [Display omitted] ► We show the influence of different inorganic ions on the sorption of organic ions. ► Column experiments are used to evaluate in the influence of the different salts. ► Ion-exchange materials can be a useful material in water treatment in combination with AC.</description><subject>acids</subject><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Affinity</subject><subject>Alternating current</subject><subject>Applied sciences</subject><subject>calcium</subject><subject>Cations</subject><subject>Cations - chemistry</subject><subject>Charging</subject><subject>chlorides</subject><subject>Drinking water</subject><subject>Drinking Water - analysis</subject><subject>Electrolytes</subject><subject>Electrolytes - chemistry</subject><subject>Exact sciences and technology</subject><subject>illicit drugs</subject><subject>inorganic ions</subject><subject>ion exchange</subject><subject>Ion Exchange Resins - chemistry</subject><subject>Ion-exchange polymers</subject><subject>Ionic pollutants</subject><subject>Metformin</subject><subject>Models, Chemical</subject><subject>Pollution</subject><subject>Polymers</subject><subject>salt concentration</subject><subject>sodium</subject><subject>Sorption</subject><subject>Water Pollutants, Chemical - isolation &amp; purification</subject><subject>Water Purification - methods</subject><subject>Water treatment</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0t2K1DAUB_Agijs7-gaiuRH2pjVfbdIbYVnWD1gQ1L0OaXsyZmibMemszp3v4Bv6JJ6ho96pNwmE3zkn5B9CnnBWcsbrF9vyi5sT5FIwLkpWl0yZe2TFjW4KoZS5T1aMKVlwWakzcp7zljEmhGwekjMhDDdNJVZkeA9jvHMDjZ52n1zaQE_H0KW4i8Own900Z-pTHCkOg0TbAw1xKuAr2mkDFNVhhJTpj2_f6bX30KE_torjDuYwbSgMeJaQzZAfkQfeDRken_Y1uX11_fHqTXHz7vXbq8ubolNGzEWttDJGCS60a6uWq44zkLL3HCRIp4X22gujvapa3_Ze1EfRg66U5H1TyTW5WPruUvy8hzzbMeQOhsFNEPfZ8lrzWuBq_k1Z3fCmYkL_B5UNUwwtUrVQfMicE3i7S2F06YDIHtOzW7ukZ4_pWVZbTA_Lnp4m7NsR-t9Fv-JC8PwEXO7c4JObupD_uFpKzSRD92xx3kXrNgnN7QecVOEXYA3Hb7EmLxcBmMNdgGRzF2DqoA8JA7N9DH-_609PP8Q1</recordid><startdate>20121015</startdate><enddate>20121015</enddate><creator>Bäuerlein, Patrick S.</creator><creator>ter Laak, Thomas L.</creator><creator>Hofman-Caris, Roberta C.H.M.</creator><creator>de Voogt, Pim</creator><creator>Droge, Steven T.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20121015</creationdate><title>Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes</title><author>Bäuerlein, Patrick S. ; ter Laak, Thomas L. ; Hofman-Caris, Roberta C.H.M. ; de Voogt, Pim ; Droge, Steven T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-64748842127ab5b14c10e33df1e3e3a727f7f287f45bfbdf264c10de75431d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>acids</topic><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Affinity</topic><topic>Alternating current</topic><topic>Applied sciences</topic><topic>calcium</topic><topic>Cations</topic><topic>Cations - chemistry</topic><topic>Charging</topic><topic>chlorides</topic><topic>Drinking water</topic><topic>Drinking Water - analysis</topic><topic>Electrolytes</topic><topic>Electrolytes - chemistry</topic><topic>Exact sciences and technology</topic><topic>illicit drugs</topic><topic>inorganic ions</topic><topic>ion exchange</topic><topic>Ion Exchange Resins - chemistry</topic><topic>Ion-exchange polymers</topic><topic>Ionic pollutants</topic><topic>Metformin</topic><topic>Models, Chemical</topic><topic>Pollution</topic><topic>Polymers</topic><topic>salt concentration</topic><topic>sodium</topic><topic>Sorption</topic><topic>Water Pollutants, Chemical - isolation &amp; purification</topic><topic>Water Purification - methods</topic><topic>Water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bäuerlein, Patrick S.</creatorcontrib><creatorcontrib>ter Laak, Thomas L.</creatorcontrib><creatorcontrib>Hofman-Caris, Roberta C.H.M.</creatorcontrib><creatorcontrib>de Voogt, Pim</creatorcontrib><creatorcontrib>Droge, Steven T.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bäuerlein, Patrick S.</au><au>ter Laak, Thomas L.</au><au>Hofman-Caris, Roberta C.H.M.</au><au>de Voogt, Pim</au><au>Droge, Steven T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2012-10-15</date><risdate>2012</risdate><volume>46</volume><issue>16</issue><spage>5009</spage><epage>5018</epage><pages>5009-5018</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H2O2, activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca2+ solutions compared to similar concentrations of Na+, while that of anionic compounds is three fold weaker in SO42- solutions compared to equal concentrations of Cl−. [Display omitted] ► We show the influence of different inorganic ions on the sorption of organic ions. ► Column experiments are used to evaluate in the influence of the different salts. ► Ion-exchange materials can be a useful material in water treatment in combination with AC.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22818952</pmid><doi>10.1016/j.watres.2012.06.048</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2012-10, Vol.46 (16), p.5009-5018
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_1671621678
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects acids
Activated carbon
Adsorption
Affinity
Alternating current
Applied sciences
calcium
Cations
Cations - chemistry
Charging
chlorides
Drinking water
Drinking Water - analysis
Electrolytes
Electrolytes - chemistry
Exact sciences and technology
illicit drugs
inorganic ions
ion exchange
Ion Exchange Resins - chemistry
Ion-exchange polymers
Ionic pollutants
Metformin
Models, Chemical
Pollution
Polymers
salt concentration
sodium
Sorption
Water Pollutants, Chemical - isolation & purification
Water Purification - methods
Water treatment
Water treatment and pollution
title Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20charged%20micropollutants%20from%20water%20by%20ion-exchange%20polymers%20%E2%80%93%20Effects%20of%20competing%20electrolytes&rft.jtitle=Water%20research%20(Oxford)&rft.au=B%C3%A4uerlein,%20Patrick%20S.&rft.date=2012-10-15&rft.volume=46&rft.issue=16&rft.spage=5009&rft.epage=5018&rft.pages=5009-5018&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2012.06.048&rft_dat=%3Cproquest_cross%3E1069195027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039040502&rft_id=info:pmid/22818952&rft_els_id=S0043135412004769&rfr_iscdi=true