Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes
A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2012-10, Vol.46 (16), p.5009-5018 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5018 |
---|---|
container_issue | 16 |
container_start_page | 5009 |
container_title | Water research (Oxford) |
container_volume | 46 |
creator | Bäuerlein, Patrick S. ter Laak, Thomas L. Hofman-Caris, Roberta C.H.M. de Voogt, Pim Droge, Steven T.J. |
description | A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H2O2, activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca2+ solutions compared to similar concentrations of Na+, while that of anionic compounds is three fold weaker in SO42- solutions compared to equal concentrations of Cl−.
[Display omitted]
► We show the influence of different inorganic ions on the sorption of organic ions. ► Column experiments are used to evaluate in the influence of the different salts. ► Ion-exchange materials can be a useful material in water treatment in combination with AC. |
doi_str_mv | 10.1016/j.watres.2012.06.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671621678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135412004769</els_id><sourcerecordid>1069195027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-64748842127ab5b14c10e33df1e3e3a727f7f287f45bfbdf264c10de75431d953</originalsourceid><addsrcrecordid>eNqN0t2K1DAUB_Agijs7-gaiuRH2pjVfbdIbYVnWD1gQ1L0OaXsyZmibMemszp3v4Bv6JJ6ho96pNwmE3zkn5B9CnnBWcsbrF9vyi5sT5FIwLkpWl0yZe2TFjW4KoZS5T1aMKVlwWakzcp7zljEmhGwekjMhDDdNJVZkeA9jvHMDjZ52n1zaQE_H0KW4i8Own900Z-pTHCkOg0TbAw1xKuAr2mkDFNVhhJTpj2_f6bX30KE_torjDuYwbSgMeJaQzZAfkQfeDRken_Y1uX11_fHqTXHz7vXbq8ubolNGzEWttDJGCS60a6uWq44zkLL3HCRIp4X22gujvapa3_Ze1EfRg66U5H1TyTW5WPruUvy8hzzbMeQOhsFNEPfZ8lrzWuBq_k1Z3fCmYkL_B5UNUwwtUrVQfMicE3i7S2F06YDIHtOzW7ukZ4_pWVZbTA_Lnp4m7NsR-t9Fv-JC8PwEXO7c4JObupD_uFpKzSRD92xx3kXrNgnN7QecVOEXYA3Hb7EmLxcBmMNdgGRzF2DqoA8JA7N9DH-_609PP8Q1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039040502</pqid></control><display><type>article</type><title>Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bäuerlein, Patrick S. ; ter Laak, Thomas L. ; Hofman-Caris, Roberta C.H.M. ; de Voogt, Pim ; Droge, Steven T.J.</creator><creatorcontrib>Bäuerlein, Patrick S. ; ter Laak, Thomas L. ; Hofman-Caris, Roberta C.H.M. ; de Voogt, Pim ; Droge, Steven T.J.</creatorcontrib><description>A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H2O2, activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca2+ solutions compared to similar concentrations of Na+, while that of anionic compounds is three fold weaker in SO42- solutions compared to equal concentrations of Cl−.
[Display omitted]
► We show the influence of different inorganic ions on the sorption of organic ions. ► Column experiments are used to evaluate in the influence of the different salts. ► Ion-exchange materials can be a useful material in water treatment in combination with AC.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2012.06.048</identifier><identifier>PMID: 22818952</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>acids ; Activated carbon ; Adsorption ; Affinity ; Alternating current ; Applied sciences ; calcium ; Cations ; Cations - chemistry ; Charging ; chlorides ; Drinking water ; Drinking Water - analysis ; Electrolytes ; Electrolytes - chemistry ; Exact sciences and technology ; illicit drugs ; inorganic ions ; ion exchange ; Ion Exchange Resins - chemistry ; Ion-exchange polymers ; Ionic pollutants ; Metformin ; Models, Chemical ; Pollution ; Polymers ; salt concentration ; sodium ; Sorption ; Water Pollutants, Chemical - isolation & purification ; Water Purification - methods ; Water treatment ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2012-10, Vol.46 (16), p.5009-5018</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-64748842127ab5b14c10e33df1e3e3a727f7f287f45bfbdf264c10de75431d953</citedby><cites>FETCH-LOGICAL-c482t-64748842127ab5b14c10e33df1e3e3a727f7f287f45bfbdf264c10de75431d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2012.06.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26337030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22818952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bäuerlein, Patrick S.</creatorcontrib><creatorcontrib>ter Laak, Thomas L.</creatorcontrib><creatorcontrib>Hofman-Caris, Roberta C.H.M.</creatorcontrib><creatorcontrib>de Voogt, Pim</creatorcontrib><creatorcontrib>Droge, Steven T.J.</creatorcontrib><title>Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H2O2, activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca2+ solutions compared to similar concentrations of Na+, while that of anionic compounds is three fold weaker in SO42- solutions compared to equal concentrations of Cl−.
[Display omitted]
► We show the influence of different inorganic ions on the sorption of organic ions. ► Column experiments are used to evaluate in the influence of the different salts. ► Ion-exchange materials can be a useful material in water treatment in combination with AC.</description><subject>acids</subject><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Affinity</subject><subject>Alternating current</subject><subject>Applied sciences</subject><subject>calcium</subject><subject>Cations</subject><subject>Cations - chemistry</subject><subject>Charging</subject><subject>chlorides</subject><subject>Drinking water</subject><subject>Drinking Water - analysis</subject><subject>Electrolytes</subject><subject>Electrolytes - chemistry</subject><subject>Exact sciences and technology</subject><subject>illicit drugs</subject><subject>inorganic ions</subject><subject>ion exchange</subject><subject>Ion Exchange Resins - chemistry</subject><subject>Ion-exchange polymers</subject><subject>Ionic pollutants</subject><subject>Metformin</subject><subject>Models, Chemical</subject><subject>Pollution</subject><subject>Polymers</subject><subject>salt concentration</subject><subject>sodium</subject><subject>Sorption</subject><subject>Water Pollutants, Chemical - isolation & purification</subject><subject>Water Purification - methods</subject><subject>Water treatment</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0t2K1DAUB_Agijs7-gaiuRH2pjVfbdIbYVnWD1gQ1L0OaXsyZmibMemszp3v4Bv6JJ6ho96pNwmE3zkn5B9CnnBWcsbrF9vyi5sT5FIwLkpWl0yZe2TFjW4KoZS5T1aMKVlwWakzcp7zljEmhGwekjMhDDdNJVZkeA9jvHMDjZ52n1zaQE_H0KW4i8Own900Z-pTHCkOg0TbAw1xKuAr2mkDFNVhhJTpj2_f6bX30KE_torjDuYwbSgMeJaQzZAfkQfeDRken_Y1uX11_fHqTXHz7vXbq8ubolNGzEWttDJGCS60a6uWq44zkLL3HCRIp4X22gujvapa3_Ze1EfRg66U5H1TyTW5WPruUvy8hzzbMeQOhsFNEPfZ8lrzWuBq_k1Z3fCmYkL_B5UNUwwtUrVQfMicE3i7S2F06YDIHtOzW7ukZ4_pWVZbTA_Lnp4m7NsR-t9Fv-JC8PwEXO7c4JObupD_uFpKzSRD92xx3kXrNgnN7QecVOEXYA3Hb7EmLxcBmMNdgGRzF2DqoA8JA7N9DH-_609PP8Q1</recordid><startdate>20121015</startdate><enddate>20121015</enddate><creator>Bäuerlein, Patrick S.</creator><creator>ter Laak, Thomas L.</creator><creator>Hofman-Caris, Roberta C.H.M.</creator><creator>de Voogt, Pim</creator><creator>Droge, Steven T.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20121015</creationdate><title>Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes</title><author>Bäuerlein, Patrick S. ; ter Laak, Thomas L. ; Hofman-Caris, Roberta C.H.M. ; de Voogt, Pim ; Droge, Steven T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-64748842127ab5b14c10e33df1e3e3a727f7f287f45bfbdf264c10de75431d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>acids</topic><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Affinity</topic><topic>Alternating current</topic><topic>Applied sciences</topic><topic>calcium</topic><topic>Cations</topic><topic>Cations - chemistry</topic><topic>Charging</topic><topic>chlorides</topic><topic>Drinking water</topic><topic>Drinking Water - analysis</topic><topic>Electrolytes</topic><topic>Electrolytes - chemistry</topic><topic>Exact sciences and technology</topic><topic>illicit drugs</topic><topic>inorganic ions</topic><topic>ion exchange</topic><topic>Ion Exchange Resins - chemistry</topic><topic>Ion-exchange polymers</topic><topic>Ionic pollutants</topic><topic>Metformin</topic><topic>Models, Chemical</topic><topic>Pollution</topic><topic>Polymers</topic><topic>salt concentration</topic><topic>sodium</topic><topic>Sorption</topic><topic>Water Pollutants, Chemical - isolation & purification</topic><topic>Water Purification - methods</topic><topic>Water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bäuerlein, Patrick S.</creatorcontrib><creatorcontrib>ter Laak, Thomas L.</creatorcontrib><creatorcontrib>Hofman-Caris, Roberta C.H.M.</creatorcontrib><creatorcontrib>de Voogt, Pim</creatorcontrib><creatorcontrib>Droge, Steven T.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bäuerlein, Patrick S.</au><au>ter Laak, Thomas L.</au><au>Hofman-Caris, Roberta C.H.M.</au><au>de Voogt, Pim</au><au>Droge, Steven T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2012-10-15</date><risdate>2012</risdate><volume>46</volume><issue>16</issue><spage>5009</spage><epage>5018</epage><pages>5009-5018</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H2O2, activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca2+ solutions compared to similar concentrations of Na+, while that of anionic compounds is three fold weaker in SO42- solutions compared to equal concentrations of Cl−.
[Display omitted]
► We show the influence of different inorganic ions on the sorption of organic ions. ► Column experiments are used to evaluate in the influence of the different salts. ► Ion-exchange materials can be a useful material in water treatment in combination with AC.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22818952</pmid><doi>10.1016/j.watres.2012.06.048</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2012-10, Vol.46 (16), p.5009-5018 |
issn | 0043-1354 1879-2448 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671621678 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | acids Activated carbon Adsorption Affinity Alternating current Applied sciences calcium Cations Cations - chemistry Charging chlorides Drinking water Drinking Water - analysis Electrolytes Electrolytes - chemistry Exact sciences and technology illicit drugs inorganic ions ion exchange Ion Exchange Resins - chemistry Ion-exchange polymers Ionic pollutants Metformin Models, Chemical Pollution Polymers salt concentration sodium Sorption Water Pollutants, Chemical - isolation & purification Water Purification - methods Water treatment Water treatment and pollution |
title | Removal of charged micropollutants from water by ion-exchange polymers – Effects of competing electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20charged%20micropollutants%20from%20water%20by%20ion-exchange%20polymers%20%E2%80%93%20Effects%20of%20competing%20electrolytes&rft.jtitle=Water%20research%20(Oxford)&rft.au=B%C3%A4uerlein,%20Patrick%20S.&rft.date=2012-10-15&rft.volume=46&rft.issue=16&rft.spage=5009&rft.epage=5018&rft.pages=5009-5018&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2012.06.048&rft_dat=%3Cproquest_cross%3E1069195027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039040502&rft_id=info:pmid/22818952&rft_els_id=S0043135412004769&rfr_iscdi=true |