A feature construction method for general object recognition
This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2013-12, Vol.46 (12), p.3300-3314 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3314 |
---|---|
container_issue | 12 |
container_start_page | 3300 |
container_title | Pattern recognition |
container_volume | 46 |
creator | Lillywhite, Kirt Lee, Dah-Jye Tippetts, Beau Archibald, James |
description | This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard genetic algorithm to discover series of transforms that are highly discriminative. Using ECO features provides several advantages over other object detection algorithms including: no need for a human expert to build feature sets or tune their parameters, ability to generate specialized feature sets for different objects, and no limitations to certain types of image sources. We show in our experiments that ECO features perform better or comparable with hand-crafted state-of-the-art object recognition algorithms. An analysis is given of ECO features which includes a visualization of ECO features and improvements made to the algorithm.
•We propose a new method for feature construction called Evolution-COnstructed (ECO) features.•ECO features remove the need for a human expert to model objects for recognition.•ECO features compete well against state-of-the-art object recognition methods.•We show examples of what information ECO features are finding in the training images. |
doi_str_mv | 10.1016/j.patcog.2013.06.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671621566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320313002549</els_id><sourcerecordid>1671621566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-9c42abf306409b44ed0dbe81f7dada084bea98256bf45c46de844a9a44fcb2363</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5aJx9NuyDCsvgFC170HNJ0smbpNmuSFfz3tnTx6GkO87zzMg8h1xQKClTebYu9TsZvCgaUFyALAHZCZrSueF5SwU7JDIDTnDPg5-Qixi0ArYbFjNwvM4s6HQJmxvcxhYNJzvfZDtOnbzPrQ7bBHoPuMt9s0aQs4NDUu5G6JGdWdxGvjnNOPp4e31cv-frt-XW1XOdG8DLlCyOYbiwHKWDRCIEttA3W1FatbjXUokG9qFkpGytKI2SLtRB6oYWwpmFc8jm5ne7ug_86YExq56LBrtM9-kNUVFZUMlrKERUTaoKPMaBV--B2OvwoCmqUpbZqkqVGWQqkGmQNsZtjg45Gdzbo3rj4l2WV5FVdj-cfJg6Hd78dBhWNw95g6wYvSbXe_V_0C9bqgeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671621566</pqid></control><display><type>article</type><title>A feature construction method for general object recognition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lillywhite, Kirt ; Lee, Dah-Jye ; Tippetts, Beau ; Archibald, James</creator><creatorcontrib>Lillywhite, Kirt ; Lee, Dah-Jye ; Tippetts, Beau ; Archibald, James</creatorcontrib><description>This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard genetic algorithm to discover series of transforms that are highly discriminative. Using ECO features provides several advantages over other object detection algorithms including: no need for a human expert to build feature sets or tune their parameters, ability to generate specialized feature sets for different objects, and no limitations to certain types of image sources. We show in our experiments that ECO features perform better or comparable with hand-crafted state-of-the-art object recognition algorithms. An analysis is given of ECO features which includes a visualization of ECO features and improvements made to the algorithm.
•We propose a new method for feature construction called Evolution-COnstructed (ECO) features.•ECO features remove the need for a human expert to model objects for recognition.•ECO features compete well against state-of-the-art object recognition methods.•We show examples of what information ECO features are finding in the training images.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2013.06.002</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>AdaBoost ; Algorithms ; Applied sciences ; Construction ; Detection, estimation, filtering, equalization, prediction ; ECO features ; Exact sciences and technology ; Feature construction ; Genetic algorithm ; Human ; Image detection ; Information, signal and communications theory ; Object detection ; Object recognition ; Pattern recognition ; Signal and communications theory ; Signal processing ; Signal, noise ; State of the art ; Telecommunications and information theory</subject><ispartof>Pattern recognition, 2013-12, Vol.46 (12), p.3300-3314</ispartof><rights>2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-9c42abf306409b44ed0dbe81f7dada084bea98256bf45c46de844a9a44fcb2363</citedby><cites>FETCH-LOGICAL-c435t-9c42abf306409b44ed0dbe81f7dada084bea98256bf45c46de844a9a44fcb2363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2013.06.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27637886$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lillywhite, Kirt</creatorcontrib><creatorcontrib>Lee, Dah-Jye</creatorcontrib><creatorcontrib>Tippetts, Beau</creatorcontrib><creatorcontrib>Archibald, James</creatorcontrib><title>A feature construction method for general object recognition</title><title>Pattern recognition</title><description>This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard genetic algorithm to discover series of transforms that are highly discriminative. Using ECO features provides several advantages over other object detection algorithms including: no need for a human expert to build feature sets or tune their parameters, ability to generate specialized feature sets for different objects, and no limitations to certain types of image sources. We show in our experiments that ECO features perform better or comparable with hand-crafted state-of-the-art object recognition algorithms. An analysis is given of ECO features which includes a visualization of ECO features and improvements made to the algorithm.
•We propose a new method for feature construction called Evolution-COnstructed (ECO) features.•ECO features remove the need for a human expert to model objects for recognition.•ECO features compete well against state-of-the-art object recognition methods.•We show examples of what information ECO features are finding in the training images.</description><subject>AdaBoost</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Construction</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>ECO features</subject><subject>Exact sciences and technology</subject><subject>Feature construction</subject><subject>Genetic algorithm</subject><subject>Human</subject><subject>Image detection</subject><subject>Information, signal and communications theory</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>State of the art</subject><subject>Telecommunications and information theory</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5aJx9NuyDCsvgFC170HNJ0smbpNmuSFfz3tnTx6GkO87zzMg8h1xQKClTebYu9TsZvCgaUFyALAHZCZrSueF5SwU7JDIDTnDPg5-Qixi0ArYbFjNwvM4s6HQJmxvcxhYNJzvfZDtOnbzPrQ7bBHoPuMt9s0aQs4NDUu5G6JGdWdxGvjnNOPp4e31cv-frt-XW1XOdG8DLlCyOYbiwHKWDRCIEttA3W1FatbjXUokG9qFkpGytKI2SLtRB6oYWwpmFc8jm5ne7ug_86YExq56LBrtM9-kNUVFZUMlrKERUTaoKPMaBV--B2OvwoCmqUpbZqkqVGWQqkGmQNsZtjg45Gdzbo3rj4l2WV5FVdj-cfJg6Hd78dBhWNw95g6wYvSbXe_V_0C9bqgeo</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Lillywhite, Kirt</creator><creator>Lee, Dah-Jye</creator><creator>Tippetts, Beau</creator><creator>Archibald, James</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>A feature construction method for general object recognition</title><author>Lillywhite, Kirt ; Lee, Dah-Jye ; Tippetts, Beau ; Archibald, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-9c42abf306409b44ed0dbe81f7dada084bea98256bf45c46de844a9a44fcb2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AdaBoost</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Construction</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>ECO features</topic><topic>Exact sciences and technology</topic><topic>Feature construction</topic><topic>Genetic algorithm</topic><topic>Human</topic><topic>Image detection</topic><topic>Information, signal and communications theory</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>State of the art</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lillywhite, Kirt</creatorcontrib><creatorcontrib>Lee, Dah-Jye</creatorcontrib><creatorcontrib>Tippetts, Beau</creatorcontrib><creatorcontrib>Archibald, James</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lillywhite, Kirt</au><au>Lee, Dah-Jye</au><au>Tippetts, Beau</au><au>Archibald, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A feature construction method for general object recognition</atitle><jtitle>Pattern recognition</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>46</volume><issue>12</issue><spage>3300</spage><epage>3314</epage><pages>3300-3314</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard genetic algorithm to discover series of transforms that are highly discriminative. Using ECO features provides several advantages over other object detection algorithms including: no need for a human expert to build feature sets or tune their parameters, ability to generate specialized feature sets for different objects, and no limitations to certain types of image sources. We show in our experiments that ECO features perform better or comparable with hand-crafted state-of-the-art object recognition algorithms. An analysis is given of ECO features which includes a visualization of ECO features and improvements made to the algorithm.
•We propose a new method for feature construction called Evolution-COnstructed (ECO) features.•ECO features remove the need for a human expert to model objects for recognition.•ECO features compete well against state-of-the-art object recognition methods.•We show examples of what information ECO features are finding in the training images.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2013.06.002</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2013-12, Vol.46 (12), p.3300-3314 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671621566 |
source | Access via ScienceDirect (Elsevier) |
subjects | AdaBoost Algorithms Applied sciences Construction Detection, estimation, filtering, equalization, prediction ECO features Exact sciences and technology Feature construction Genetic algorithm Human Image detection Information, signal and communications theory Object detection Object recognition Pattern recognition Signal and communications theory Signal processing Signal, noise State of the art Telecommunications and information theory |
title | A feature construction method for general object recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20feature%20construction%20method%20for%20general%20object%20recognition&rft.jtitle=Pattern%20recognition&rft.au=Lillywhite,%20Kirt&rft.date=2013-12-01&rft.volume=46&rft.issue=12&rft.spage=3300&rft.epage=3314&rft.pages=3300-3314&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2013.06.002&rft_dat=%3Cproquest_cross%3E1671621566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671621566&rft_id=info:pmid/&rft_els_id=S0031320313002549&rfr_iscdi=true |