A feature construction method for general object recognition

This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2013-12, Vol.46 (12), p.3300-3314
Hauptverfasser: Lillywhite, Kirt, Lee, Dah-Jye, Tippetts, Beau, Archibald, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3314
container_issue 12
container_start_page 3300
container_title Pattern recognition
container_volume 46
creator Lillywhite, Kirt
Lee, Dah-Jye
Tippetts, Beau
Archibald, James
description This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard genetic algorithm to discover series of transforms that are highly discriminative. Using ECO features provides several advantages over other object detection algorithms including: no need for a human expert to build feature sets or tune their parameters, ability to generate specialized feature sets for different objects, and no limitations to certain types of image sources. We show in our experiments that ECO features perform better or comparable with hand-crafted state-of-the-art object recognition algorithms. An analysis is given of ECO features which includes a visualization of ECO features and improvements made to the algorithm. •We propose a new method for feature construction called Evolution-COnstructed (ECO) features.•ECO features remove the need for a human expert to model objects for recognition.•ECO features compete well against state-of-the-art object recognition methods.•We show examples of what information ECO features are finding in the training images.
doi_str_mv 10.1016/j.patcog.2013.06.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671621566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320313002549</els_id><sourcerecordid>1671621566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-9c42abf306409b44ed0dbe81f7dada084bea98256bf45c46de844a9a44fcb2363</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5aJx9NuyDCsvgFC170HNJ0smbpNmuSFfz3tnTx6GkO87zzMg8h1xQKClTebYu9TsZvCgaUFyALAHZCZrSueF5SwU7JDIDTnDPg5-Qixi0ArYbFjNwvM4s6HQJmxvcxhYNJzvfZDtOnbzPrQ7bBHoPuMt9s0aQs4NDUu5G6JGdWdxGvjnNOPp4e31cv-frt-XW1XOdG8DLlCyOYbiwHKWDRCIEttA3W1FatbjXUokG9qFkpGytKI2SLtRB6oYWwpmFc8jm5ne7ug_86YExq56LBrtM9-kNUVFZUMlrKERUTaoKPMaBV--B2OvwoCmqUpbZqkqVGWQqkGmQNsZtjg45Gdzbo3rj4l2WV5FVdj-cfJg6Hd78dBhWNw95g6wYvSbXe_V_0C9bqgeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671621566</pqid></control><display><type>article</type><title>A feature construction method for general object recognition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lillywhite, Kirt ; Lee, Dah-Jye ; Tippetts, Beau ; Archibald, James</creator><creatorcontrib>Lillywhite, Kirt ; Lee, Dah-Jye ; Tippetts, Beau ; Archibald, James</creatorcontrib><description>This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard genetic algorithm to discover series of transforms that are highly discriminative. Using ECO features provides several advantages over other object detection algorithms including: no need for a human expert to build feature sets or tune their parameters, ability to generate specialized feature sets for different objects, and no limitations to certain types of image sources. We show in our experiments that ECO features perform better or comparable with hand-crafted state-of-the-art object recognition algorithms. An analysis is given of ECO features which includes a visualization of ECO features and improvements made to the algorithm. •We propose a new method for feature construction called Evolution-COnstructed (ECO) features.•ECO features remove the need for a human expert to model objects for recognition.•ECO features compete well against state-of-the-art object recognition methods.•We show examples of what information ECO features are finding in the training images.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2013.06.002</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>AdaBoost ; Algorithms ; Applied sciences ; Construction ; Detection, estimation, filtering, equalization, prediction ; ECO features ; Exact sciences and technology ; Feature construction ; Genetic algorithm ; Human ; Image detection ; Information, signal and communications theory ; Object detection ; Object recognition ; Pattern recognition ; Signal and communications theory ; Signal processing ; Signal, noise ; State of the art ; Telecommunications and information theory</subject><ispartof>Pattern recognition, 2013-12, Vol.46 (12), p.3300-3314</ispartof><rights>2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-9c42abf306409b44ed0dbe81f7dada084bea98256bf45c46de844a9a44fcb2363</citedby><cites>FETCH-LOGICAL-c435t-9c42abf306409b44ed0dbe81f7dada084bea98256bf45c46de844a9a44fcb2363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2013.06.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27637886$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lillywhite, Kirt</creatorcontrib><creatorcontrib>Lee, Dah-Jye</creatorcontrib><creatorcontrib>Tippetts, Beau</creatorcontrib><creatorcontrib>Archibald, James</creatorcontrib><title>A feature construction method for general object recognition</title><title>Pattern recognition</title><description>This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard genetic algorithm to discover series of transforms that are highly discriminative. Using ECO features provides several advantages over other object detection algorithms including: no need for a human expert to build feature sets or tune their parameters, ability to generate specialized feature sets for different objects, and no limitations to certain types of image sources. We show in our experiments that ECO features perform better or comparable with hand-crafted state-of-the-art object recognition algorithms. An analysis is given of ECO features which includes a visualization of ECO features and improvements made to the algorithm. •We propose a new method for feature construction called Evolution-COnstructed (ECO) features.•ECO features remove the need for a human expert to model objects for recognition.•ECO features compete well against state-of-the-art object recognition methods.•We show examples of what information ECO features are finding in the training images.</description><subject>AdaBoost</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Construction</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>ECO features</subject><subject>Exact sciences and technology</subject><subject>Feature construction</subject><subject>Genetic algorithm</subject><subject>Human</subject><subject>Image detection</subject><subject>Information, signal and communications theory</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>State of the art</subject><subject>Telecommunications and information theory</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5aJx9NuyDCsvgFC170HNJ0smbpNmuSFfz3tnTx6GkO87zzMg8h1xQKClTebYu9TsZvCgaUFyALAHZCZrSueF5SwU7JDIDTnDPg5-Qixi0ArYbFjNwvM4s6HQJmxvcxhYNJzvfZDtOnbzPrQ7bBHoPuMt9s0aQs4NDUu5G6JGdWdxGvjnNOPp4e31cv-frt-XW1XOdG8DLlCyOYbiwHKWDRCIEttA3W1FatbjXUokG9qFkpGytKI2SLtRB6oYWwpmFc8jm5ne7ug_86YExq56LBrtM9-kNUVFZUMlrKERUTaoKPMaBV--B2OvwoCmqUpbZqkqVGWQqkGmQNsZtjg45Gdzbo3rj4l2WV5FVdj-cfJg6Hd78dBhWNw95g6wYvSbXe_V_0C9bqgeo</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Lillywhite, Kirt</creator><creator>Lee, Dah-Jye</creator><creator>Tippetts, Beau</creator><creator>Archibald, James</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>A feature construction method for general object recognition</title><author>Lillywhite, Kirt ; Lee, Dah-Jye ; Tippetts, Beau ; Archibald, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-9c42abf306409b44ed0dbe81f7dada084bea98256bf45c46de844a9a44fcb2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AdaBoost</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Construction</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>ECO features</topic><topic>Exact sciences and technology</topic><topic>Feature construction</topic><topic>Genetic algorithm</topic><topic>Human</topic><topic>Image detection</topic><topic>Information, signal and communications theory</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>State of the art</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lillywhite, Kirt</creatorcontrib><creatorcontrib>Lee, Dah-Jye</creatorcontrib><creatorcontrib>Tippetts, Beau</creatorcontrib><creatorcontrib>Archibald, James</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lillywhite, Kirt</au><au>Lee, Dah-Jye</au><au>Tippetts, Beau</au><au>Archibald, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A feature construction method for general object recognition</atitle><jtitle>Pattern recognition</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>46</volume><issue>12</issue><spage>3300</spage><epage>3314</epage><pages>3300-3314</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>This paper presents a novel approach for object detection using a feature construction method called Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts to construct features. ECO features are automatically constructed by uniquely employing a standard genetic algorithm to discover series of transforms that are highly discriminative. Using ECO features provides several advantages over other object detection algorithms including: no need for a human expert to build feature sets or tune their parameters, ability to generate specialized feature sets for different objects, and no limitations to certain types of image sources. We show in our experiments that ECO features perform better or comparable with hand-crafted state-of-the-art object recognition algorithms. An analysis is given of ECO features which includes a visualization of ECO features and improvements made to the algorithm. •We propose a new method for feature construction called Evolution-COnstructed (ECO) features.•ECO features remove the need for a human expert to model objects for recognition.•ECO features compete well against state-of-the-art object recognition methods.•We show examples of what information ECO features are finding in the training images.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2013.06.002</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2013-12, Vol.46 (12), p.3300-3314
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_1671621566
source Access via ScienceDirect (Elsevier)
subjects AdaBoost
Algorithms
Applied sciences
Construction
Detection, estimation, filtering, equalization, prediction
ECO features
Exact sciences and technology
Feature construction
Genetic algorithm
Human
Image detection
Information, signal and communications theory
Object detection
Object recognition
Pattern recognition
Signal and communications theory
Signal processing
Signal, noise
State of the art
Telecommunications and information theory
title A feature construction method for general object recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20feature%20construction%20method%20for%20general%20object%20recognition&rft.jtitle=Pattern%20recognition&rft.au=Lillywhite,%20Kirt&rft.date=2013-12-01&rft.volume=46&rft.issue=12&rft.spage=3300&rft.epage=3314&rft.pages=3300-3314&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2013.06.002&rft_dat=%3Cproquest_cross%3E1671621566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671621566&rft_id=info:pmid/&rft_els_id=S0031320313002549&rfr_iscdi=true