A pulsed wave excitation system to characterize micron-scale magnetoelastic biosensors
•We develop a pulse wave excitation system which can be used to resonate and measure micron-scale magnetoelastic (ME) biosensors.•We design a low noise signal amplification system for the time-domain resonance signal of ME biosensors.•We investigate the detection of limit on 200μm-long ME biosensors...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2014-01, Vol.205, p.143-149 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | |
container_start_page | 143 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 205 |
creator | Xie, Hong Chai, Yating Horikawa, Shin Li, Suiqiong Chin, Bryan A. Wikle, H. Clyde |
description | •We develop a pulse wave excitation system which can be used to resonate and measure micron-scale magnetoelastic (ME) biosensors.•We design a low noise signal amplification system for the time-domain resonance signal of ME biosensors.•We investigate the detection of limit on 200μm-long ME biosensors with the detection system.
This paper describes the design of a resonant frequency measurement system based on a pulsed wave excitation technique that can be used to resonate and measure micron-size Magnetoelastic (ME) biosensors. Current measurement techniques can only detect millimeter and above size ME biosensors. By using a specially designed, dedicated coil and low noise cascade amplifier, the system described in this paper is capable of measuring micron-size (ME) biosensors as small as 200μm in length (200×40×15μm). In the system, a square pulse current is applied to an excitation coil to excite the ME sensors, and a pick-up coil senses its mechanical vibration and converts it to an electrical output signal. The output signal is amplified by a signal amplification circuit and the output waveform is shown on an oscilloscope. Based on the acquired damped oscillating signal, the frequency change due to the mass change on the surface of the ME biosensor can be calculated. The impact of signal amplification on the resonant frequency, amplitude, and Q-factor of the resonant frequency peak, has been studied. The average resonant frequency of a 200μm sensor was found to be 10.8283±0.0027MHz. As a proof-in-concept experiment, the detection system was used in combination with JRB7 phage-coated ME biosensors to detect different concentrations of Bacillus anthracis spores. A statistically significant difference for all concentrations of 5×102spore/ml and higher can be reached by the system. |
doi_str_mv | 10.1016/j.sna.2013.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671620137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424713005487</els_id><sourcerecordid>1531002817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7d50b5a724ed86458c68c84e87dc125fe2b3d9c98d77193c60ec53fc72fe17743</originalsourceid><addsrcrecordid>eNqNkUtv1EAQhEcoSGyW_ABuPnKxmZ6HxxanKOIlReICXEez7XaYldezTM8Gkl8fW8sZcmq19FWpVCXEG5ANSGjf7RueQ6Mk6AagkVK_EBvonK61bPsLsZG9MrVRxr0Sl8x7uRDauY34cV0dTxPTUP0O91TRH4wllJjmih-40KEqqcKfIQcslOMjVYeIOc01Y5iWJ9zNVBJNgUvEahcT08wp82vxcgyL7dXfuxXfP374dvO5vv366cvN9W2NRvWldoOVOxucMjR0rbEdth12hjo3ICg7ktrpoce-G5yDXmMrCa0e0amRwDmjt-Lt2feY068TcfGHyEjTFGZKJ_bQOmjXVtwzUAvGStf2_0etBWmcks8IYDVIqTpYA8AZXQpkzjT6Y46HkB88SL-O6Pd-GdGvcT2AXyfaivdnDS0l3kfKnjHSjDTETFj8kOI_1E_LTKQd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531002817</pqid></control><display><type>article</type><title>A pulsed wave excitation system to characterize micron-scale magnetoelastic biosensors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xie, Hong ; Chai, Yating ; Horikawa, Shin ; Li, Suiqiong ; Chin, Bryan A. ; Wikle, H. Clyde</creator><creatorcontrib>Xie, Hong ; Chai, Yating ; Horikawa, Shin ; Li, Suiqiong ; Chin, Bryan A. ; Wikle, H. Clyde</creatorcontrib><description>•We develop a pulse wave excitation system which can be used to resonate and measure micron-scale magnetoelastic (ME) biosensors.•We design a low noise signal amplification system for the time-domain resonance signal of ME biosensors.•We investigate the detection of limit on 200μm-long ME biosensors with the detection system.
This paper describes the design of a resonant frequency measurement system based on a pulsed wave excitation technique that can be used to resonate and measure micron-size Magnetoelastic (ME) biosensors. Current measurement techniques can only detect millimeter and above size ME biosensors. By using a specially designed, dedicated coil and low noise cascade amplifier, the system described in this paper is capable of measuring micron-size (ME) biosensors as small as 200μm in length (200×40×15μm). In the system, a square pulse current is applied to an excitation coil to excite the ME sensors, and a pick-up coil senses its mechanical vibration and converts it to an electrical output signal. The output signal is amplified by a signal amplification circuit and the output waveform is shown on an oscilloscope. Based on the acquired damped oscillating signal, the frequency change due to the mass change on the surface of the ME biosensor can be calculated. The impact of signal amplification on the resonant frequency, amplitude, and Q-factor of the resonant frequency peak, has been studied. The average resonant frequency of a 200μm sensor was found to be 10.8283±0.0027MHz. As a proof-in-concept experiment, the detection system was used in combination with JRB7 phage-coated ME biosensors to detect different concentrations of Bacillus anthracis spores. A statistically significant difference for all concentrations of 5×102spore/ml and higher can be reached by the system.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2013.11.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Amplification ; Bacillus anthracis ; Biosensors ; Cascade amplifier ; Coiling ; Excitation ; Micron-size magnetoelastic biosensor ; Pulse wave excitation technique ; Resonant frequencies ; Sensors ; Spores ; Wave excitation</subject><ispartof>Sensors and actuators. A. Physical., 2014-01, Vol.205, p.143-149</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7d50b5a724ed86458c68c84e87dc125fe2b3d9c98d77193c60ec53fc72fe17743</citedby><cites>FETCH-LOGICAL-c429t-7d50b5a724ed86458c68c84e87dc125fe2b3d9c98d77193c60ec53fc72fe17743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2013.11.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xie, Hong</creatorcontrib><creatorcontrib>Chai, Yating</creatorcontrib><creatorcontrib>Horikawa, Shin</creatorcontrib><creatorcontrib>Li, Suiqiong</creatorcontrib><creatorcontrib>Chin, Bryan A.</creatorcontrib><creatorcontrib>Wikle, H. Clyde</creatorcontrib><title>A pulsed wave excitation system to characterize micron-scale magnetoelastic biosensors</title><title>Sensors and actuators. A. Physical.</title><description>•We develop a pulse wave excitation system which can be used to resonate and measure micron-scale magnetoelastic (ME) biosensors.•We design a low noise signal amplification system for the time-domain resonance signal of ME biosensors.•We investigate the detection of limit on 200μm-long ME biosensors with the detection system.
This paper describes the design of a resonant frequency measurement system based on a pulsed wave excitation technique that can be used to resonate and measure micron-size Magnetoelastic (ME) biosensors. Current measurement techniques can only detect millimeter and above size ME biosensors. By using a specially designed, dedicated coil and low noise cascade amplifier, the system described in this paper is capable of measuring micron-size (ME) biosensors as small as 200μm in length (200×40×15μm). In the system, a square pulse current is applied to an excitation coil to excite the ME sensors, and a pick-up coil senses its mechanical vibration and converts it to an electrical output signal. The output signal is amplified by a signal amplification circuit and the output waveform is shown on an oscilloscope. Based on the acquired damped oscillating signal, the frequency change due to the mass change on the surface of the ME biosensor can be calculated. The impact of signal amplification on the resonant frequency, amplitude, and Q-factor of the resonant frequency peak, has been studied. The average resonant frequency of a 200μm sensor was found to be 10.8283±0.0027MHz. As a proof-in-concept experiment, the detection system was used in combination with JRB7 phage-coated ME biosensors to detect different concentrations of Bacillus anthracis spores. A statistically significant difference for all concentrations of 5×102spore/ml and higher can be reached by the system.</description><subject>Amplification</subject><subject>Bacillus anthracis</subject><subject>Biosensors</subject><subject>Cascade amplifier</subject><subject>Coiling</subject><subject>Excitation</subject><subject>Micron-size magnetoelastic biosensor</subject><subject>Pulse wave excitation technique</subject><subject>Resonant frequencies</subject><subject>Sensors</subject><subject>Spores</subject><subject>Wave excitation</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1EAQhEcoSGyW_ABuPnKxmZ6HxxanKOIlReICXEez7XaYldezTM8Gkl8fW8sZcmq19FWpVCXEG5ANSGjf7RueQ6Mk6AagkVK_EBvonK61bPsLsZG9MrVRxr0Sl8x7uRDauY34cV0dTxPTUP0O91TRH4wllJjmih-40KEqqcKfIQcslOMjVYeIOc01Y5iWJ9zNVBJNgUvEahcT08wp82vxcgyL7dXfuxXfP374dvO5vv366cvN9W2NRvWldoOVOxucMjR0rbEdth12hjo3ICg7ktrpoce-G5yDXmMrCa0e0amRwDmjt-Lt2feY068TcfGHyEjTFGZKJ_bQOmjXVtwzUAvGStf2_0etBWmcks8IYDVIqTpYA8AZXQpkzjT6Y46HkB88SL-O6Pd-GdGvcT2AXyfaivdnDS0l3kfKnjHSjDTETFj8kOI_1E_LTKQd</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Xie, Hong</creator><creator>Chai, Yating</creator><creator>Horikawa, Shin</creator><creator>Li, Suiqiong</creator><creator>Chin, Bryan A.</creator><creator>Wikle, H. Clyde</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>A pulsed wave excitation system to characterize micron-scale magnetoelastic biosensors</title><author>Xie, Hong ; Chai, Yating ; Horikawa, Shin ; Li, Suiqiong ; Chin, Bryan A. ; Wikle, H. Clyde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7d50b5a724ed86458c68c84e87dc125fe2b3d9c98d77193c60ec53fc72fe17743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplification</topic><topic>Bacillus anthracis</topic><topic>Biosensors</topic><topic>Cascade amplifier</topic><topic>Coiling</topic><topic>Excitation</topic><topic>Micron-size magnetoelastic biosensor</topic><topic>Pulse wave excitation technique</topic><topic>Resonant frequencies</topic><topic>Sensors</topic><topic>Spores</topic><topic>Wave excitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hong</creatorcontrib><creatorcontrib>Chai, Yating</creatorcontrib><creatorcontrib>Horikawa, Shin</creatorcontrib><creatorcontrib>Li, Suiqiong</creatorcontrib><creatorcontrib>Chin, Bryan A.</creatorcontrib><creatorcontrib>Wikle, H. Clyde</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Hong</au><au>Chai, Yating</au><au>Horikawa, Shin</au><au>Li, Suiqiong</au><au>Chin, Bryan A.</au><au>Wikle, H. Clyde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A pulsed wave excitation system to characterize micron-scale magnetoelastic biosensors</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>205</volume><spage>143</spage><epage>149</epage><pages>143-149</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>•We develop a pulse wave excitation system which can be used to resonate and measure micron-scale magnetoelastic (ME) biosensors.•We design a low noise signal amplification system for the time-domain resonance signal of ME biosensors.•We investigate the detection of limit on 200μm-long ME biosensors with the detection system.
This paper describes the design of a resonant frequency measurement system based on a pulsed wave excitation technique that can be used to resonate and measure micron-size Magnetoelastic (ME) biosensors. Current measurement techniques can only detect millimeter and above size ME biosensors. By using a specially designed, dedicated coil and low noise cascade amplifier, the system described in this paper is capable of measuring micron-size (ME) biosensors as small as 200μm in length (200×40×15μm). In the system, a square pulse current is applied to an excitation coil to excite the ME sensors, and a pick-up coil senses its mechanical vibration and converts it to an electrical output signal. The output signal is amplified by a signal amplification circuit and the output waveform is shown on an oscilloscope. Based on the acquired damped oscillating signal, the frequency change due to the mass change on the surface of the ME biosensor can be calculated. The impact of signal amplification on the resonant frequency, amplitude, and Q-factor of the resonant frequency peak, has been studied. The average resonant frequency of a 200μm sensor was found to be 10.8283±0.0027MHz. As a proof-in-concept experiment, the detection system was used in combination with JRB7 phage-coated ME biosensors to detect different concentrations of Bacillus anthracis spores. A statistically significant difference for all concentrations of 5×102spore/ml and higher can be reached by the system.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2013.11.003</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2014-01, Vol.205, p.143-149 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671620137 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Amplification Bacillus anthracis Biosensors Cascade amplifier Coiling Excitation Micron-size magnetoelastic biosensor Pulse wave excitation technique Resonant frequencies Sensors Spores Wave excitation |
title | A pulsed wave excitation system to characterize micron-scale magnetoelastic biosensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20pulsed%20wave%20excitation%20system%20to%20characterize%20micron-scale%20magnetoelastic%20biosensors&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Xie,%20Hong&rft.date=2014-01-01&rft.volume=205&rft.spage=143&rft.epage=149&rft.pages=143-149&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2013.11.003&rft_dat=%3Cproquest_cross%3E1531002817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531002817&rft_id=info:pmid/&rft_els_id=S0924424713005487&rfr_iscdi=true |