Electrical Conductivity of Mullite Ceramics
The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2014-06, Vol.97 (6), p.1923-1930 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1930 |
---|---|
container_issue | 6 |
container_start_page | 1923 |
container_title | Journal of the American Ceramic Society |
container_volume | 97 |
creator | Malki, Mohammed Hoo, Christopher M. Mecartney, Martha L. Schneider, Hartmut |
description | The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10−9 Scm−1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10−6 Scm−1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10−5 Scm−1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (< ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates. |
doi_str_mv | 10.1111/jace.12867 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671619579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3337154371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4007-6c2a200e220daaab1e57581a9f458da418a32a80efa7c3106604c7e9770dd8853</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pxU9Q8CJKZ540bz2OMqcy35iitxDTFDK7dSatum9vZ9WDh-USQn7_8OSP0CHgAbTrbKaNHQCRXGyhHjAGMUmBb6MexpjEQhK8i_ZCmLVHSCXtodNRaU3tndFllFWLvDG1e3f1KqqK6LopS1fbKLNez50J-2in0GWwBz97Hz2ejx6yi3hyO77MhpPYUIxFzA3RBGNLCM611i9gmWASdFpQJnNNQeqEaIltoYVJAHOOqRE2FQLnuZQs6aPj7t2lr94aG2o1d8HYstQLWzVBARfAIWUibenRPzqrGr9op1PQfhwSLBOyUbGEp5xyRlt10injqxC8LdTSu7n2KwVYrdtV63bVd7sthg5_uNKuNkh1NcxGv5m4y7hQ28-_jPavqr0VTD3djBWd3t-R6eRGPSdf7NCILg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1536964654</pqid></control><display><type>article</type><title>Electrical Conductivity of Mullite Ceramics</title><source>Access via Wiley Online Library</source><creator>Malki, Mohammed ; Hoo, Christopher M. ; Mecartney, Martha L. ; Schneider, Hartmut</creator><contributor>Jimmy Wei, W.-C. ; Jimmy Wei, W.‐C.</contributor><creatorcontrib>Malki, Mohammed ; Hoo, Christopher M. ; Mecartney, Martha L. ; Schneider, Hartmut ; Jimmy Wei, W.-C. ; Jimmy Wei, W.‐C.</creatorcontrib><description>The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10−9 Scm−1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10−6 Scm−1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10−5 Scm−1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (< ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.12867</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>Activation energy ; Alloys ; Aluminum oxide ; Ceramic sintering ; Ceramics ; Conductivity ; Conductors ; Crystal defects ; Electrical conductivity ; Electrical resistivity ; Electronics ; Grain boundaries ; Grain size ; Impedance spectroscopy ; Insulators ; Mullite ; Polycrystals ; Porosity ; Resistivity ; Single crystals ; Sintering ; Spectroscopic analysis ; Spectrum analysis ; Temperature distribution ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2014-06, Vol.97 (6), p.1923-1930</ispartof><rights>2014 The American Ceramic Society</rights><rights>Copyright Wiley Subscription Services, Inc. Jun 2014</rights><rights>2014 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4007-6c2a200e220daaab1e57581a9f458da418a32a80efa7c3106604c7e9770dd8853</citedby><cites>FETCH-LOGICAL-c4007-6c2a200e220daaab1e57581a9f458da418a32a80efa7c3106604c7e9770dd8853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.12867$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.12867$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Jimmy Wei, W.-C.</contributor><contributor>Jimmy Wei, W.‐C.</contributor><creatorcontrib>Malki, Mohammed</creatorcontrib><creatorcontrib>Hoo, Christopher M.</creatorcontrib><creatorcontrib>Mecartney, Martha L.</creatorcontrib><creatorcontrib>Schneider, Hartmut</creatorcontrib><title>Electrical Conductivity of Mullite Ceramics</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10−9 Scm−1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10−6 Scm−1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10−5 Scm−1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (< ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.</description><subject>Activation energy</subject><subject>Alloys</subject><subject>Aluminum oxide</subject><subject>Ceramic sintering</subject><subject>Ceramics</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Crystal defects</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Impedance spectroscopy</subject><subject>Insulators</subject><subject>Mullite</subject><subject>Polycrystals</subject><subject>Porosity</subject><subject>Resistivity</subject><subject>Single crystals</subject><subject>Sintering</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Temperature distribution</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgCs7pxU9Q8CJKZ540bz2OMqcy35iitxDTFDK7dSatum9vZ9WDh-USQn7_8OSP0CHgAbTrbKaNHQCRXGyhHjAGMUmBb6MexpjEQhK8i_ZCmLVHSCXtodNRaU3tndFllFWLvDG1e3f1KqqK6LopS1fbKLNez50J-2in0GWwBz97Hz2ejx6yi3hyO77MhpPYUIxFzA3RBGNLCM611i9gmWASdFpQJnNNQeqEaIltoYVJAHOOqRE2FQLnuZQs6aPj7t2lr94aG2o1d8HYstQLWzVBARfAIWUibenRPzqrGr9op1PQfhwSLBOyUbGEp5xyRlt10injqxC8LdTSu7n2KwVYrdtV63bVd7sthg5_uNKuNkh1NcxGv5m4y7hQ28-_jPavqr0VTD3djBWd3t-R6eRGPSdf7NCILg</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Malki, Mohammed</creator><creator>Hoo, Christopher M.</creator><creator>Mecartney, Martha L.</creator><creator>Schneider, Hartmut</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>201406</creationdate><title>Electrical Conductivity of Mullite Ceramics</title><author>Malki, Mohammed ; Hoo, Christopher M. ; Mecartney, Martha L. ; Schneider, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4007-6c2a200e220daaab1e57581a9f458da418a32a80efa7c3106604c7e9770dd8853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation energy</topic><topic>Alloys</topic><topic>Aluminum oxide</topic><topic>Ceramic sintering</topic><topic>Ceramics</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Crystal defects</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Impedance spectroscopy</topic><topic>Insulators</topic><topic>Mullite</topic><topic>Polycrystals</topic><topic>Porosity</topic><topic>Resistivity</topic><topic>Single crystals</topic><topic>Sintering</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Temperature distribution</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malki, Mohammed</creatorcontrib><creatorcontrib>Hoo, Christopher M.</creatorcontrib><creatorcontrib>Mecartney, Martha L.</creatorcontrib><creatorcontrib>Schneider, Hartmut</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malki, Mohammed</au><au>Hoo, Christopher M.</au><au>Mecartney, Martha L.</au><au>Schneider, Hartmut</au><au>Jimmy Wei, W.-C.</au><au>Jimmy Wei, W.‐C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Conductivity of Mullite Ceramics</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2014-06</date><risdate>2014</risdate><volume>97</volume><issue>6</issue><spage>1923</spage><epage>1930</epage><pages>1923-1930</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10−9 Scm−1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10−6 Scm−1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10−5 Scm−1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (< ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.12867</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2014-06, Vol.97 (6), p.1923-1930 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671619579 |
source | Access via Wiley Online Library |
subjects | Activation energy Alloys Aluminum oxide Ceramic sintering Ceramics Conductivity Conductors Crystal defects Electrical conductivity Electrical resistivity Electronics Grain boundaries Grain size Impedance spectroscopy Insulators Mullite Polycrystals Porosity Resistivity Single crystals Sintering Spectroscopic analysis Spectrum analysis Temperature distribution Zirconium dioxide |
title | Electrical Conductivity of Mullite Ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Conductivity%20of%20Mullite%20Ceramics&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Malki,%20Mohammed&rft.date=2014-06&rft.volume=97&rft.issue=6&rft.spage=1923&rft.epage=1930&rft.pages=1923-1930&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.12867&rft_dat=%3Cproquest_cross%3E3337154371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1536964654&rft_id=info:pmid/&rfr_iscdi=true |