Electrical Conductivity of Mullite Ceramics

The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2014-06, Vol.97 (6), p.1923-1930
Hauptverfasser: Malki, Mohammed, Hoo, Christopher M., Mecartney, Martha L., Schneider, Hartmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1930
container_issue 6
container_start_page 1923
container_title Journal of the American Ceramic Society
container_volume 97
creator Malki, Mohammed
Hoo, Christopher M.
Mecartney, Martha L.
Schneider, Hartmut
description The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10−9 Scm−1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10−6 Scm−1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10−5 Scm−1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (< ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.
doi_str_mv 10.1111/jace.12867
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671619579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3337154371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4007-6c2a200e220daaab1e57581a9f458da418a32a80efa7c3106604c7e9770dd8853</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pxU9Q8CJKZ540bz2OMqcy35iitxDTFDK7dSatum9vZ9WDh-USQn7_8OSP0CHgAbTrbKaNHQCRXGyhHjAGMUmBb6MexpjEQhK8i_ZCmLVHSCXtodNRaU3tndFllFWLvDG1e3f1KqqK6LopS1fbKLNez50J-2in0GWwBz97Hz2ejx6yi3hyO77MhpPYUIxFzA3RBGNLCM611i9gmWASdFpQJnNNQeqEaIltoYVJAHOOqRE2FQLnuZQs6aPj7t2lr94aG2o1d8HYstQLWzVBARfAIWUibenRPzqrGr9op1PQfhwSLBOyUbGEp5xyRlt10injqxC8LdTSu7n2KwVYrdtV63bVd7sthg5_uNKuNkh1NcxGv5m4y7hQ28-_jPavqr0VTD3djBWd3t-R6eRGPSdf7NCILg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1536964654</pqid></control><display><type>article</type><title>Electrical Conductivity of Mullite Ceramics</title><source>Access via Wiley Online Library</source><creator>Malki, Mohammed ; Hoo, Christopher M. ; Mecartney, Martha L. ; Schneider, Hartmut</creator><contributor>Jimmy Wei, W.-C. ; Jimmy Wei, W.‐C.</contributor><creatorcontrib>Malki, Mohammed ; Hoo, Christopher M. ; Mecartney, Martha L. ; Schneider, Hartmut ; Jimmy Wei, W.-C. ; Jimmy Wei, W.‐C.</creatorcontrib><description>The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10−9 Scm−1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10−6 Scm−1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10−5 Scm−1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (&lt; ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.12867</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>Activation energy ; Alloys ; Aluminum oxide ; Ceramic sintering ; Ceramics ; Conductivity ; Conductors ; Crystal defects ; Electrical conductivity ; Electrical resistivity ; Electronics ; Grain boundaries ; Grain size ; Impedance spectroscopy ; Insulators ; Mullite ; Polycrystals ; Porosity ; Resistivity ; Single crystals ; Sintering ; Spectroscopic analysis ; Spectrum analysis ; Temperature distribution ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2014-06, Vol.97 (6), p.1923-1930</ispartof><rights>2014 The American Ceramic Society</rights><rights>Copyright Wiley Subscription Services, Inc. Jun 2014</rights><rights>2014 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4007-6c2a200e220daaab1e57581a9f458da418a32a80efa7c3106604c7e9770dd8853</citedby><cites>FETCH-LOGICAL-c4007-6c2a200e220daaab1e57581a9f458da418a32a80efa7c3106604c7e9770dd8853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.12867$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.12867$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Jimmy Wei, W.-C.</contributor><contributor>Jimmy Wei, W.‐C.</contributor><creatorcontrib>Malki, Mohammed</creatorcontrib><creatorcontrib>Hoo, Christopher M.</creatorcontrib><creatorcontrib>Mecartney, Martha L.</creatorcontrib><creatorcontrib>Schneider, Hartmut</creatorcontrib><title>Electrical Conductivity of Mullite Ceramics</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10−9 Scm−1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10−6 Scm−1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10−5 Scm−1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (&lt; ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.</description><subject>Activation energy</subject><subject>Alloys</subject><subject>Aluminum oxide</subject><subject>Ceramic sintering</subject><subject>Ceramics</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Crystal defects</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Impedance spectroscopy</subject><subject>Insulators</subject><subject>Mullite</subject><subject>Polycrystals</subject><subject>Porosity</subject><subject>Resistivity</subject><subject>Single crystals</subject><subject>Sintering</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Temperature distribution</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgCs7pxU9Q8CJKZ540bz2OMqcy35iitxDTFDK7dSatum9vZ9WDh-USQn7_8OSP0CHgAbTrbKaNHQCRXGyhHjAGMUmBb6MexpjEQhK8i_ZCmLVHSCXtodNRaU3tndFllFWLvDG1e3f1KqqK6LopS1fbKLNez50J-2in0GWwBz97Hz2ejx6yi3hyO77MhpPYUIxFzA3RBGNLCM611i9gmWASdFpQJnNNQeqEaIltoYVJAHOOqRE2FQLnuZQs6aPj7t2lr94aG2o1d8HYstQLWzVBARfAIWUibenRPzqrGr9op1PQfhwSLBOyUbGEp5xyRlt10injqxC8LdTSu7n2KwVYrdtV63bVd7sthg5_uNKuNkh1NcxGv5m4y7hQ28-_jPavqr0VTD3djBWd3t-R6eRGPSdf7NCILg</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Malki, Mohammed</creator><creator>Hoo, Christopher M.</creator><creator>Mecartney, Martha L.</creator><creator>Schneider, Hartmut</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>201406</creationdate><title>Electrical Conductivity of Mullite Ceramics</title><author>Malki, Mohammed ; Hoo, Christopher M. ; Mecartney, Martha L. ; Schneider, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4007-6c2a200e220daaab1e57581a9f458da418a32a80efa7c3106604c7e9770dd8853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation energy</topic><topic>Alloys</topic><topic>Aluminum oxide</topic><topic>Ceramic sintering</topic><topic>Ceramics</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Crystal defects</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Impedance spectroscopy</topic><topic>Insulators</topic><topic>Mullite</topic><topic>Polycrystals</topic><topic>Porosity</topic><topic>Resistivity</topic><topic>Single crystals</topic><topic>Sintering</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Temperature distribution</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malki, Mohammed</creatorcontrib><creatorcontrib>Hoo, Christopher M.</creatorcontrib><creatorcontrib>Mecartney, Martha L.</creatorcontrib><creatorcontrib>Schneider, Hartmut</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malki, Mohammed</au><au>Hoo, Christopher M.</au><au>Mecartney, Martha L.</au><au>Schneider, Hartmut</au><au>Jimmy Wei, W.-C.</au><au>Jimmy Wei, W.‐C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Conductivity of Mullite Ceramics</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2014-06</date><risdate>2014</risdate><volume>97</volume><issue>6</issue><spage>1923</spage><epage>1930</epage><pages>1923-1930</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10−9 Scm−1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10−6 Scm−1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10−5 Scm−1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (&lt; ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.12867</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2014-06, Vol.97 (6), p.1923-1930
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_1671619579
source Access via Wiley Online Library
subjects Activation energy
Alloys
Aluminum oxide
Ceramic sintering
Ceramics
Conductivity
Conductors
Crystal defects
Electrical conductivity
Electrical resistivity
Electronics
Grain boundaries
Grain size
Impedance spectroscopy
Insulators
Mullite
Polycrystals
Porosity
Resistivity
Single crystals
Sintering
Spectroscopic analysis
Spectrum analysis
Temperature distribution
Zirconium dioxide
title Electrical Conductivity of Mullite Ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Conductivity%20of%20Mullite%20Ceramics&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Malki,%20Mohammed&rft.date=2014-06&rft.volume=97&rft.issue=6&rft.spage=1923&rft.epage=1930&rft.pages=1923-1930&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.12867&rft_dat=%3Cproquest_cross%3E3337154371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1536964654&rft_id=info:pmid/&rfr_iscdi=true