The inhomogeneous Suslov problem

We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal axis of inertia of the body, then the reduced equations are integrable and, in the generic case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2014-06, Vol.378 (32-33), p.2389-2394
Hauptverfasser: García-Naranjo, Luis C., Maciejewski, Andrzej J., Marrero, Juan C., Przybylska, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2394
container_issue 32-33
container_start_page 2389
container_title Physics letters. A
container_volume 378
creator García-Naranjo, Luis C.
Maciejewski, Andrzej J.
Marrero, Juan C.
Przybylska, Maria
description We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal axis of inertia of the body, then the reduced equations are integrable and, in the generic case, possess a smooth invariant measure. Interestingly, in this generic case, the first integral that permits integration is transcendental and the density of the invariant measure depends on the angular velocities. We also study the Painlevé property of the solutions. •We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints.•We study the problem in detail for a particular choice of the parameters that has a clear physical interpretation.•We show that the equations of motion possess an invariant measure whose density depends on the velocity variables.•We show that the reduced system is integrable due to the existence of a transcendental first integral.•We study the Painlevé property of the solutions.
doi_str_mv 10.1016/j.physleta.2014.06.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671617587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960114005957</els_id><sourcerecordid>1671617587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1d52647f67c428d46bee17a47ea27ea8d3e709b0bd3ab7c26434d47133e2f40c3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCihHLgnrn9rNDVRBQarEgXK2HHtDXSV1sdNKfXtcCmcOq73MzO58hNxSqChQeb-utqtD6nAwFQMqKpAVMHlGRnSqeMkEq8_JCLialLUEekmuUloDZCfUI1IsV1j4zSr04RM3GHapeN-lLuyLbQxNh_01uWhNl_Dmd4_Jx_PTcvZSLt7mr7PHRWmF5ENJ3YRJoVqprGBTJ2SDSJURCg3LM3UcFdQNNI6bRtms5cIJRTlH1gqwfEzuTrn57tcO06B7nyx2nfn5SlOpqKRqkjuNiTxJbQwpRWz1NvrexIOmoI9I9Fr_IdFHJBqkzkiy8eFkxFxk7zHqZD1uLDof0Q7aBf9fxDfc4GzO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671617587</pqid></control><display><type>article</type><title>The inhomogeneous Suslov problem</title><source>Elsevier ScienceDirect Journals</source><creator>García-Naranjo, Luis C. ; Maciejewski, Andrzej J. ; Marrero, Juan C. ; Przybylska, Maria</creator><creatorcontrib>García-Naranjo, Luis C. ; Maciejewski, Andrzej J. ; Marrero, Juan C. ; Przybylska, Maria</creatorcontrib><description>We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal axis of inertia of the body, then the reduced equations are integrable and, in the generic case, possess a smooth invariant measure. Interestingly, in this generic case, the first integral that permits integration is transcendental and the density of the invariant measure depends on the angular velocities. We also study the Painlevé property of the solutions. •We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints.•We study the problem in detail for a particular choice of the parameters that has a clear physical interpretation.•We show that the equations of motion possess an invariant measure whose density depends on the velocity variables.•We show that the reduced system is integrable due to the existence of a transcendental first integral.•We study the Painlevé property of the solutions.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2014.06.026</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Angular velocity ; Density ; Inertia ; Integrability ; Integrals ; Invariant volume forms ; Invariants ; Mathematical analysis ; Nonholonomic mechanical systems ; Rigid-body dynamics ; Solid state physics ; Suslov problem</subject><ispartof>Physics letters. A, 2014-06, Vol.378 (32-33), p.2389-2394</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1d52647f67c428d46bee17a47ea27ea8d3e709b0bd3ab7c26434d47133e2f40c3</citedby><cites>FETCH-LOGICAL-c463t-1d52647f67c428d46bee17a47ea27ea8d3e709b0bd3ab7c26434d47133e2f40c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0375960114005957$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>García-Naranjo, Luis C.</creatorcontrib><creatorcontrib>Maciejewski, Andrzej J.</creatorcontrib><creatorcontrib>Marrero, Juan C.</creatorcontrib><creatorcontrib>Przybylska, Maria</creatorcontrib><title>The inhomogeneous Suslov problem</title><title>Physics letters. A</title><description>We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal axis of inertia of the body, then the reduced equations are integrable and, in the generic case, possess a smooth invariant measure. Interestingly, in this generic case, the first integral that permits integration is transcendental and the density of the invariant measure depends on the angular velocities. We also study the Painlevé property of the solutions. •We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints.•We study the problem in detail for a particular choice of the parameters that has a clear physical interpretation.•We show that the equations of motion possess an invariant measure whose density depends on the velocity variables.•We show that the reduced system is integrable due to the existence of a transcendental first integral.•We study the Painlevé property of the solutions.</description><subject>Angular velocity</subject><subject>Density</subject><subject>Inertia</subject><subject>Integrability</subject><subject>Integrals</subject><subject>Invariant volume forms</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Nonholonomic mechanical systems</subject><subject>Rigid-body dynamics</subject><subject>Solid state physics</subject><subject>Suslov problem</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCihHLgnrn9rNDVRBQarEgXK2HHtDXSV1sdNKfXtcCmcOq73MzO58hNxSqChQeb-utqtD6nAwFQMqKpAVMHlGRnSqeMkEq8_JCLialLUEekmuUloDZCfUI1IsV1j4zSr04RM3GHapeN-lLuyLbQxNh_01uWhNl_Dmd4_Jx_PTcvZSLt7mr7PHRWmF5ENJ3YRJoVqprGBTJ2SDSJURCg3LM3UcFdQNNI6bRtms5cIJRTlH1gqwfEzuTrn57tcO06B7nyx2nfn5SlOpqKRqkjuNiTxJbQwpRWz1NvrexIOmoI9I9Fr_IdFHJBqkzkiy8eFkxFxk7zHqZD1uLDof0Q7aBf9fxDfc4GzO</recordid><startdate>20140627</startdate><enddate>20140627</enddate><creator>García-Naranjo, Luis C.</creator><creator>Maciejewski, Andrzej J.</creator><creator>Marrero, Juan C.</creator><creator>Przybylska, Maria</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140627</creationdate><title>The inhomogeneous Suslov problem</title><author>García-Naranjo, Luis C. ; Maciejewski, Andrzej J. ; Marrero, Juan C. ; Przybylska, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1d52647f67c428d46bee17a47ea27ea8d3e709b0bd3ab7c26434d47133e2f40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Angular velocity</topic><topic>Density</topic><topic>Inertia</topic><topic>Integrability</topic><topic>Integrals</topic><topic>Invariant volume forms</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Nonholonomic mechanical systems</topic><topic>Rigid-body dynamics</topic><topic>Solid state physics</topic><topic>Suslov problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Naranjo, Luis C.</creatorcontrib><creatorcontrib>Maciejewski, Andrzej J.</creatorcontrib><creatorcontrib>Marrero, Juan C.</creatorcontrib><creatorcontrib>Przybylska, Maria</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Naranjo, Luis C.</au><au>Maciejewski, Andrzej J.</au><au>Marrero, Juan C.</au><au>Przybylska, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The inhomogeneous Suslov problem</atitle><jtitle>Physics letters. A</jtitle><date>2014-06-27</date><risdate>2014</risdate><volume>378</volume><issue>32-33</issue><spage>2389</spage><epage>2394</epage><pages>2389-2394</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal axis of inertia of the body, then the reduced equations are integrable and, in the generic case, possess a smooth invariant measure. Interestingly, in this generic case, the first integral that permits integration is transcendental and the density of the invariant measure depends on the angular velocities. We also study the Painlevé property of the solutions. •We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints.•We study the problem in detail for a particular choice of the parameters that has a clear physical interpretation.•We show that the equations of motion possess an invariant measure whose density depends on the velocity variables.•We show that the reduced system is integrable due to the existence of a transcendental first integral.•We study the Painlevé property of the solutions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2014.06.026</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2014-06, Vol.378 (32-33), p.2389-2394
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_1671617587
source Elsevier ScienceDirect Journals
subjects Angular velocity
Density
Inertia
Integrability
Integrals
Invariant volume forms
Invariants
Mathematical analysis
Nonholonomic mechanical systems
Rigid-body dynamics
Solid state physics
Suslov problem
title The inhomogeneous Suslov problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20inhomogeneous%20Suslov%20problem&rft.jtitle=Physics%20letters.%20A&rft.au=Garc%C3%ADa-Naranjo,%20Luis%20C.&rft.date=2014-06-27&rft.volume=378&rft.issue=32-33&rft.spage=2389&rft.epage=2394&rft.pages=2389-2394&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2014.06.026&rft_dat=%3Cproquest_cross%3E1671617587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671617587&rft_id=info:pmid/&rft_els_id=S0375960114005957&rfr_iscdi=true