[hamilt] sub( infinity )[hamilt] infinity filter design for nonlinear polynomial systems

The problem of [hamilt] sub( infinity )[hamilt] infinity filter design for continuous-time nonlinear polynomial systems is addressed in this paper. The aim is to design a full order dynamic filter that depends polynomially on the filter states. The strategy relies on the use of a quadratic Lyapunov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems & control letters 2014-08, Vol.70, p.77-84
Hauptverfasser: Lacerda, Marcio J, Tarbouriech, Sophie, Garcia, Germain, Peres, Pedro LD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 77
container_title Systems & control letters
container_volume 70
creator Lacerda, Marcio J
Tarbouriech, Sophie
Garcia, Germain
Peres, Pedro LD
description The problem of [hamilt] sub( infinity )[hamilt] infinity filter design for continuous-time nonlinear polynomial systems is addressed in this paper. The aim is to design a full order dynamic filter that depends polynomially on the filter states. The strategy relies on the use of a quadratic Lyapunov function and an inequality condition that assures an [hamilt] sub( infinity )[hamilt] infinity performance bound for the augmented polynomial system, composed by the original system and the filter to be designed, in a regional (local) context. Then, by using Finsler's lemma, an enlarged parameter space is created, where the Lyapunov matrix appears separated from the system matrices in the conditions. Imposing structural constraints to the decision variables and fixing some values for a scalar parameter, design conditions for the [hamilt] sub( infinity )[hamilt] infinity filter can be obtained in terms of linear matrix inequalities. As illustrated by numerical experiments, the proposed conditions can improve the [hamilt] sub( infinity )[hamilt] infinity performance provided by standard linear filtering by including the polynomial terms in the filter dynamics.
doi_str_mv 10.1016/j.sysconle.2014.05.014
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671617032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671617032</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16716170323</originalsourceid><addsrcrecordid>eNqVjj8PgjAUxDtoIv75CqYjDtRXUIiz0fgBHEyMIRUfWlJa5MHAt7eDcXe63O8uuWNsKUFIkOm6EjRQ4axBEYPcCNgKLyMW-DCL0p2UEzYlqgAghiQJ2OX6UrU23Y1Tfw-5tqW2uhv46sd_qPQWW_5A0k_LS9dy64e0RdXyxpnBulorw_2BDmuas3GpDOHiqzMWHg_n_SlqWvfukbq81lSgMcqi6yn3_2QqM0ji5I_qB4ZdThM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671617032</pqid></control><display><type>article</type><title>[hamilt] sub( infinity )[hamilt] infinity filter design for nonlinear polynomial systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lacerda, Marcio J ; Tarbouriech, Sophie ; Garcia, Germain ; Peres, Pedro LD</creator><creatorcontrib>Lacerda, Marcio J ; Tarbouriech, Sophie ; Garcia, Germain ; Peres, Pedro LD</creatorcontrib><description>The problem of [hamilt] sub( infinity )[hamilt] infinity filter design for continuous-time nonlinear polynomial systems is addressed in this paper. The aim is to design a full order dynamic filter that depends polynomially on the filter states. The strategy relies on the use of a quadratic Lyapunov function and an inequality condition that assures an [hamilt] sub( infinity )[hamilt] infinity performance bound for the augmented polynomial system, composed by the original system and the filter to be designed, in a regional (local) context. Then, by using Finsler's lemma, an enlarged parameter space is created, where the Lyapunov matrix appears separated from the system matrices in the conditions. Imposing structural constraints to the decision variables and fixing some values for a scalar parameter, design conditions for the [hamilt] sub( infinity )[hamilt] infinity filter can be obtained in terms of linear matrix inequalities. As illustrated by numerical experiments, the proposed conditions can improve the [hamilt] sub( infinity )[hamilt] infinity performance provided by standard linear filtering by including the polynomial terms in the filter dynamics.</description><identifier>ISSN: 0167-6911</identifier><identifier>DOI: 10.1016/j.sysconle.2014.05.014</identifier><language>eng</language><subject>Design engineering ; Dynamical systems ; Dynamics ; Mathematical analysis ; Mathematical models ; Nonlinear dynamics ; Nonlinearity ; Polynomials</subject><ispartof>Systems &amp; control letters, 2014-08, Vol.70, p.77-84</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lacerda, Marcio J</creatorcontrib><creatorcontrib>Tarbouriech, Sophie</creatorcontrib><creatorcontrib>Garcia, Germain</creatorcontrib><creatorcontrib>Peres, Pedro LD</creatorcontrib><title>[hamilt] sub( infinity )[hamilt] infinity filter design for nonlinear polynomial systems</title><title>Systems &amp; control letters</title><description>The problem of [hamilt] sub( infinity )[hamilt] infinity filter design for continuous-time nonlinear polynomial systems is addressed in this paper. The aim is to design a full order dynamic filter that depends polynomially on the filter states. The strategy relies on the use of a quadratic Lyapunov function and an inequality condition that assures an [hamilt] sub( infinity )[hamilt] infinity performance bound for the augmented polynomial system, composed by the original system and the filter to be designed, in a regional (local) context. Then, by using Finsler's lemma, an enlarged parameter space is created, where the Lyapunov matrix appears separated from the system matrices in the conditions. Imposing structural constraints to the decision variables and fixing some values for a scalar parameter, design conditions for the [hamilt] sub( infinity )[hamilt] infinity filter can be obtained in terms of linear matrix inequalities. As illustrated by numerical experiments, the proposed conditions can improve the [hamilt] sub( infinity )[hamilt] infinity performance provided by standard linear filtering by including the polynomial terms in the filter dynamics.</description><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><issn>0167-6911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVjj8PgjAUxDtoIv75CqYjDtRXUIiz0fgBHEyMIRUfWlJa5MHAt7eDcXe63O8uuWNsKUFIkOm6EjRQ4axBEYPcCNgKLyMW-DCL0p2UEzYlqgAghiQJ2OX6UrU23Y1Tfw-5tqW2uhv46sd_qPQWW_5A0k_LS9dy64e0RdXyxpnBulorw_2BDmuas3GpDOHiqzMWHg_n_SlqWvfukbq81lSgMcqi6yn3_2QqM0ji5I_qB4ZdThM</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Lacerda, Marcio J</creator><creator>Tarbouriech, Sophie</creator><creator>Garcia, Germain</creator><creator>Peres, Pedro LD</creator><scope>7SP</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>[hamilt] sub( infinity )[hamilt] infinity filter design for nonlinear polynomial systems</title><author>Lacerda, Marcio J ; Tarbouriech, Sophie ; Garcia, Germain ; Peres, Pedro LD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16716170323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacerda, Marcio J</creatorcontrib><creatorcontrib>Tarbouriech, Sophie</creatorcontrib><creatorcontrib>Garcia, Germain</creatorcontrib><creatorcontrib>Peres, Pedro LD</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Systems &amp; control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacerda, Marcio J</au><au>Tarbouriech, Sophie</au><au>Garcia, Germain</au><au>Peres, Pedro LD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[hamilt] sub( infinity )[hamilt] infinity filter design for nonlinear polynomial systems</atitle><jtitle>Systems &amp; control letters</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>70</volume><spage>77</spage><epage>84</epage><pages>77-84</pages><issn>0167-6911</issn><abstract>The problem of [hamilt] sub( infinity )[hamilt] infinity filter design for continuous-time nonlinear polynomial systems is addressed in this paper. The aim is to design a full order dynamic filter that depends polynomially on the filter states. The strategy relies on the use of a quadratic Lyapunov function and an inequality condition that assures an [hamilt] sub( infinity )[hamilt] infinity performance bound for the augmented polynomial system, composed by the original system and the filter to be designed, in a regional (local) context. Then, by using Finsler's lemma, an enlarged parameter space is created, where the Lyapunov matrix appears separated from the system matrices in the conditions. Imposing structural constraints to the decision variables and fixing some values for a scalar parameter, design conditions for the [hamilt] sub( infinity )[hamilt] infinity filter can be obtained in terms of linear matrix inequalities. As illustrated by numerical experiments, the proposed conditions can improve the [hamilt] sub( infinity )[hamilt] infinity performance provided by standard linear filtering by including the polynomial terms in the filter dynamics.</abstract><doi>10.1016/j.sysconle.2014.05.014</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-6911
ispartof Systems & control letters, 2014-08, Vol.70, p.77-84
issn 0167-6911
language eng
recordid cdi_proquest_miscellaneous_1671617032
source ScienceDirect Journals (5 years ago - present)
subjects Design engineering
Dynamical systems
Dynamics
Mathematical analysis
Mathematical models
Nonlinear dynamics
Nonlinearity
Polynomials
title [hamilt] sub( infinity )[hamilt] infinity filter design for nonlinear polynomial systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5Bhamilt%5D%20sub(%20infinity%20)%5Bhamilt%5D%20infinity%20filter%20design%20for%20nonlinear%20polynomial%20systems&rft.jtitle=Systems%20&%20control%20letters&rft.au=Lacerda,%20Marcio%20J&rft.date=2014-08-01&rft.volume=70&rft.spage=77&rft.epage=84&rft.pages=77-84&rft.issn=0167-6911&rft_id=info:doi/10.1016/j.sysconle.2014.05.014&rft_dat=%3Cproquest%3E1671617032%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671617032&rft_id=info:pmid/&rfr_iscdi=true