Accuracy comparison of short-term oil price forecasting models

A forecasting model of the monthly crude oil price is investigated using the data between 1988 and 2009 from U. S. Energy Information Administration. First generalized auto-regressive condi- tional beteroskedasticity (GARCH) is applied to a state space model, a hybrid model (SS-GARCH) is proposed. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Beijing Institute of Technology 2014-03, Vol.23 (1), p.83-88
Hauptverfasser: LI, Wei-qi, MA, Lin-wei, DAI, Ya-ping, LI, Dong-hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 83
container_title Journal of Beijing Institute of Technology
container_volume 23
creator LI, Wei-qi
MA, Lin-wei
DAI, Ya-ping
LI, Dong-hai
description A forecasting model of the monthly crude oil price is investigated using the data between 1988 and 2009 from U. S. Energy Information Administration. First generalized auto-regressive condi- tional beteroskedasticity (GARCH) is applied to a state space model, a hybrid model (SS-GARCH) is proposed. Afterwards by computing a special likelihood function with two weak assumptions, model parameters are estimated by means of a faster algorithm. Based on the SS-GARCH model with the identified parameters, oil prices of next three months are forecasted by applying a Kalman filter. Through comparing the results between the SS-GARCH model and an econometric structure model, the SS-GARCH method is shown that it improves the forecasting accuracy by decreasing the index of mean absolute error ( RMSE ) from 7. 09 to 2.99, and also decreasing the index of MAE from 3. 83 to 1.69. The results indicate that the SS-GARCH model can play a useful role in forecasting short-term crude oil prices.
format Article
fullrecord <record><control><sourceid>proquest_chong</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671615431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49278947</cqvip_id><sourcerecordid>1671615431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c129t-c65208bccc3cc24b24a340a9eacea07d8d2619d30f20719f1f5736264c681bae3</originalsourceid><addsrcrecordid>eNotjrtqwzAUQDW00JDmH9Sti0FXkvVYCiH0BYEs7WzkaykR2JYj2UP-voZ0OsvhcB7IBhiTFau1fSK7UmLLwBhujVQb8rZHXLLDG8U0TC7HkkaaAi2XlOdq9nmgKfZ0yhE9DSl7dGWO45kOqfN9eSaPwfXF7_65Jb8f7z-Hr-p4-vw-7I8VArdzharmzLSIKBC5bLl0QjJnvUPvmO5MxxXYTrDAmQYbINRaKK4kKgOt82JLXu_dKafr4svcDLGg73s3-rSUBpQGBbUUsKovdxUvaTxf19dmvR9cvjXScm2s1OIPvfNSBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671615431</pqid></control><display><type>article</type><title>Accuracy comparison of short-term oil price forecasting models</title><source>Alma/SFX Local Collection</source><creator>LI, Wei-qi ; MA, Lin-wei ; DAI, Ya-ping ; LI, Dong-hai</creator><creatorcontrib>LI, Wei-qi ; MA, Lin-wei ; DAI, Ya-ping ; LI, Dong-hai</creatorcontrib><description>A forecasting model of the monthly crude oil price is investigated using the data between 1988 and 2009 from U. S. Energy Information Administration. First generalized auto-regressive condi- tional beteroskedasticity (GARCH) is applied to a state space model, a hybrid model (SS-GARCH) is proposed. Afterwards by computing a special likelihood function with two weak assumptions, model parameters are estimated by means of a faster algorithm. Based on the SS-GARCH model with the identified parameters, oil prices of next three months are forecasted by applying a Kalman filter. Through comparing the results between the SS-GARCH model and an econometric structure model, the SS-GARCH method is shown that it improves the forecasting accuracy by decreasing the index of mean absolute error ( RMSE ) from 7. 09 to 2.99, and also decreasing the index of MAE from 3. 83 to 1.69. The results indicate that the SS-GARCH model can play a useful role in forecasting short-term crude oil prices.</description><identifier>ISSN: 1004-0579</identifier><language>eng</language><subject>Accuracy ; Algorithms ; Crude oil ; Energy use ; Forecasting ; Mathematical analysis ; Mathematical models ; State space models</subject><ispartof>Journal of Beijing Institute of Technology, 2014-03, Vol.23 (1), p.83-88</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85479X/85479X.jpg</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>LI, Wei-qi</creatorcontrib><creatorcontrib>MA, Lin-wei</creatorcontrib><creatorcontrib>DAI, Ya-ping</creatorcontrib><creatorcontrib>LI, Dong-hai</creatorcontrib><title>Accuracy comparison of short-term oil price forecasting models</title><title>Journal of Beijing Institute of Technology</title><addtitle>Journal of Beijing Institute of Technology</addtitle><description>A forecasting model of the monthly crude oil price is investigated using the data between 1988 and 2009 from U. S. Energy Information Administration. First generalized auto-regressive condi- tional beteroskedasticity (GARCH) is applied to a state space model, a hybrid model (SS-GARCH) is proposed. Afterwards by computing a special likelihood function with two weak assumptions, model parameters are estimated by means of a faster algorithm. Based on the SS-GARCH model with the identified parameters, oil prices of next three months are forecasted by applying a Kalman filter. Through comparing the results between the SS-GARCH model and an econometric structure model, the SS-GARCH method is shown that it improves the forecasting accuracy by decreasing the index of mean absolute error ( RMSE ) from 7. 09 to 2.99, and also decreasing the index of MAE from 3. 83 to 1.69. The results indicate that the SS-GARCH model can play a useful role in forecasting short-term crude oil prices.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Crude oil</subject><subject>Energy use</subject><subject>Forecasting</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>State space models</subject><issn>1004-0579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotjrtqwzAUQDW00JDmH9Sti0FXkvVYCiH0BYEs7WzkaykR2JYj2UP-voZ0OsvhcB7IBhiTFau1fSK7UmLLwBhujVQb8rZHXLLDG8U0TC7HkkaaAi2XlOdq9nmgKfZ0yhE9DSl7dGWO45kOqfN9eSaPwfXF7_65Jb8f7z-Hr-p4-vw-7I8VArdzharmzLSIKBC5bLl0QjJnvUPvmO5MxxXYTrDAmQYbINRaKK4kKgOt82JLXu_dKafr4svcDLGg73s3-rSUBpQGBbUUsKovdxUvaTxf19dmvR9cvjXScm2s1OIPvfNSBA</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>LI, Wei-qi</creator><creator>MA, Lin-wei</creator><creator>DAI, Ya-ping</creator><creator>LI, Dong-hai</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Accuracy comparison of short-term oil price forecasting models</title><author>LI, Wei-qi ; MA, Lin-wei ; DAI, Ya-ping ; LI, Dong-hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c129t-c65208bccc3cc24b24a340a9eacea07d8d2619d30f20719f1f5736264c681bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Crude oil</topic><topic>Energy use</topic><topic>Forecasting</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>State space models</topic><toplevel>online_resources</toplevel><creatorcontrib>LI, Wei-qi</creatorcontrib><creatorcontrib>MA, Lin-wei</creatorcontrib><creatorcontrib>DAI, Ya-ping</creatorcontrib><creatorcontrib>LI, Dong-hai</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Beijing Institute of Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LI, Wei-qi</au><au>MA, Lin-wei</au><au>DAI, Ya-ping</au><au>LI, Dong-hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy comparison of short-term oil price forecasting models</atitle><jtitle>Journal of Beijing Institute of Technology</jtitle><addtitle>Journal of Beijing Institute of Technology</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>23</volume><issue>1</issue><spage>83</spage><epage>88</epage><pages>83-88</pages><issn>1004-0579</issn><abstract>A forecasting model of the monthly crude oil price is investigated using the data between 1988 and 2009 from U. S. Energy Information Administration. First generalized auto-regressive condi- tional beteroskedasticity (GARCH) is applied to a state space model, a hybrid model (SS-GARCH) is proposed. Afterwards by computing a special likelihood function with two weak assumptions, model parameters are estimated by means of a faster algorithm. Based on the SS-GARCH model with the identified parameters, oil prices of next three months are forecasted by applying a Kalman filter. Through comparing the results between the SS-GARCH model and an econometric structure model, the SS-GARCH method is shown that it improves the forecasting accuracy by decreasing the index of mean absolute error ( RMSE ) from 7. 09 to 2.99, and also decreasing the index of MAE from 3. 83 to 1.69. The results indicate that the SS-GARCH model can play a useful role in forecasting short-term crude oil prices.</abstract><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-0579
ispartof Journal of Beijing Institute of Technology, 2014-03, Vol.23 (1), p.83-88
issn 1004-0579
language eng
recordid cdi_proquest_miscellaneous_1671615431
source Alma/SFX Local Collection
subjects Accuracy
Algorithms
Crude oil
Energy use
Forecasting
Mathematical analysis
Mathematical models
State space models
title Accuracy comparison of short-term oil price forecasting models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20comparison%20of%20short-term%20oil%20price%20forecasting%20models&rft.jtitle=Journal%20of%20Beijing%20Institute%20of%20Technology&rft.au=LI,%20Wei-qi&rft.date=2014-03-01&rft.volume=23&rft.issue=1&rft.spage=83&rft.epage=88&rft.pages=83-88&rft.issn=1004-0579&rft_id=info:doi/&rft_dat=%3Cproquest_chong%3E1671615431%3C/proquest_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671615431&rft_id=info:pmid/&rft_cqvip_id=49278947&rfr_iscdi=true