Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries

SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned natu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2013-12, Vol.113, p.149-155
Hauptverfasser: Lee, Bichna, Han, Su Chul, Oh, Minhak, Lah, Myoung Soo, Sohn, Kee-Sun, Pyo, Myoungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue
container_start_page 149
container_title Electrochimica acta
container_volume 113
creator Lee, Bichna
Han, Su Chul
Oh, Minhak
Lah, Myoung Soo
Sohn, Kee-Sun
Pyo, Myoungho
description SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO2 nanocomposites (SnO2/rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO2/rGTO nanocomposites (280m2g−1 and 0.27cm3g−1, respectively) were significantly decreased, by comparison with those of the SnO2/rGO nanocomposites (390m2g−1 and 0.39cm3g−1, respectively), which resulted in an enhanced dimensional-stability of SnO2 during the lithium alloying/dealloying processes. As a result, SnO2/rGTO proved to be superior to SnO2/rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template.
doi_str_mv 10.1016/j.electacta.2013.09.093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671615165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468613018550</els_id><sourcerecordid>1671615165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-3a2377f7113ccf5bb82b3ff4bfbbb5f638bf1e04e091ec764d1843ec13a4127b3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWB-_wSzdTM1tZpLpUsQXCG50HZLMTU2ZJjVJRVf-dVMrbgsHQjjfudzLIeQC2BQYiKvlFEe0RVdNZwz4lM2r-AGZQC95w_tufkgmrDpNK3pxTE5yXjLGpJBsQr5ffKCDj59-QBp0iGudircjZupX64SLoAsOtEKLpNdvviDdsS6mXyJ-VHv05c1vVjSXmPQCqQ4DtV921MZX62sbz2hjGHSqnxio0aVg8pjPyJHTY8bzv_eUvN7dvtw8NE_P948310-NbaEvDdczLqWTANxa1xnTzwx3rjXOGNM5wXvjAFmLbA5opWgH6FuOFrhuYSYNPyWXu7l14_cN5qJWPlscRx0wbrICIUFAB6Lbj3YcGBNd11ZU7lCbYs4JnVonv6pHKmBq245aqv921LYdxeZVvCavd0msR394TCpbj8Hi4FPl1RD93hk_75CgFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531006554</pqid></control><display><type>article</type><title>Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Bichna ; Han, Su Chul ; Oh, Minhak ; Lah, Myoung Soo ; Sohn, Kee-Sun ; Pyo, Myoungho</creator><creatorcontrib>Lee, Bichna ; Han, Su Chul ; Oh, Minhak ; Lah, Myoung Soo ; Sohn, Kee-Sun ; Pyo, Myoungho</creatorcontrib><description>SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO2 nanocomposites (SnO2/rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO2/rGTO nanocomposites (280m2g−1 and 0.27cm3g−1, respectively) were significantly decreased, by comparison with those of the SnO2/rGO nanocomposites (390m2g−1 and 0.39cm3g−1, respectively), which resulted in an enhanced dimensional-stability of SnO2 during the lithium alloying/dealloying processes. As a result, SnO2/rGTO proved to be superior to SnO2/rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2013.09.093</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alloying ; Anode ; Graphene ; Graphite oxide ; Lithium ; Lithium batteries ; Lithium ion batteries ; Nanocomposites ; Oxides ; Tin dioxide ; Tin oxides</subject><ispartof>Electrochimica acta, 2013-12, Vol.113, p.149-155</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-3a2377f7113ccf5bb82b3ff4bfbbb5f638bf1e04e091ec764d1843ec13a4127b3</citedby><cites>FETCH-LOGICAL-c418t-3a2377f7113ccf5bb82b3ff4bfbbb5f638bf1e04e091ec764d1843ec13a4127b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468613018550$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids></links><search><creatorcontrib>Lee, Bichna</creatorcontrib><creatorcontrib>Han, Su Chul</creatorcontrib><creatorcontrib>Oh, Minhak</creatorcontrib><creatorcontrib>Lah, Myoung Soo</creatorcontrib><creatorcontrib>Sohn, Kee-Sun</creatorcontrib><creatorcontrib>Pyo, Myoungho</creatorcontrib><title>Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries</title><title>Electrochimica acta</title><description>SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO2 nanocomposites (SnO2/rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO2/rGTO nanocomposites (280m2g−1 and 0.27cm3g−1, respectively) were significantly decreased, by comparison with those of the SnO2/rGO nanocomposites (390m2g−1 and 0.39cm3g−1, respectively), which resulted in an enhanced dimensional-stability of SnO2 during the lithium alloying/dealloying processes. As a result, SnO2/rGTO proved to be superior to SnO2/rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template.</description><subject>Alloying</subject><subject>Anode</subject><subject>Graphene</subject><subject>Graphite oxide</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium ion batteries</subject><subject>Nanocomposites</subject><subject>Oxides</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEUhYMoWB-_wSzdTM1tZpLpUsQXCG50HZLMTU2ZJjVJRVf-dVMrbgsHQjjfudzLIeQC2BQYiKvlFEe0RVdNZwz4lM2r-AGZQC95w_tufkgmrDpNK3pxTE5yXjLGpJBsQr5ffKCDj59-QBp0iGudircjZupX64SLoAsOtEKLpNdvviDdsS6mXyJ-VHv05c1vVjSXmPQCqQ4DtV921MZX62sbz2hjGHSqnxio0aVg8pjPyJHTY8bzv_eUvN7dvtw8NE_P948310-NbaEvDdczLqWTANxa1xnTzwx3rjXOGNM5wXvjAFmLbA5opWgH6FuOFrhuYSYNPyWXu7l14_cN5qJWPlscRx0wbrICIUFAB6Lbj3YcGBNd11ZU7lCbYs4JnVonv6pHKmBq245aqv921LYdxeZVvCavd0msR394TCpbj8Hi4FPl1RD93hk_75CgFg</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Lee, Bichna</creator><creator>Han, Su Chul</creator><creator>Oh, Minhak</creator><creator>Lah, Myoung Soo</creator><creator>Sohn, Kee-Sun</creator><creator>Pyo, Myoungho</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131215</creationdate><title>Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries</title><author>Lee, Bichna ; Han, Su Chul ; Oh, Minhak ; Lah, Myoung Soo ; Sohn, Kee-Sun ; Pyo, Myoungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-3a2377f7113ccf5bb82b3ff4bfbbb5f638bf1e04e091ec764d1843ec13a4127b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloying</topic><topic>Anode</topic><topic>Graphene</topic><topic>Graphite oxide</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium ion batteries</topic><topic>Nanocomposites</topic><topic>Oxides</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Bichna</creatorcontrib><creatorcontrib>Han, Su Chul</creatorcontrib><creatorcontrib>Oh, Minhak</creatorcontrib><creatorcontrib>Lah, Myoung Soo</creatorcontrib><creatorcontrib>Sohn, Kee-Sun</creatorcontrib><creatorcontrib>Pyo, Myoungho</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Bichna</au><au>Han, Su Chul</au><au>Oh, Minhak</au><au>Lah, Myoung Soo</au><au>Sohn, Kee-Sun</au><au>Pyo, Myoungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2013-12-15</date><risdate>2013</risdate><volume>113</volume><spage>149</spage><epage>155</epage><pages>149-155</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO2 nanocomposites (SnO2/rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO2/rGTO nanocomposites (280m2g−1 and 0.27cm3g−1, respectively) were significantly decreased, by comparison with those of the SnO2/rGO nanocomposites (390m2g−1 and 0.39cm3g−1, respectively), which resulted in an enhanced dimensional-stability of SnO2 during the lithium alloying/dealloying processes. As a result, SnO2/rGTO proved to be superior to SnO2/rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2013.09.093</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2013-12, Vol.113, p.149-155
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_1671615165
source Elsevier ScienceDirect Journals
subjects Alloying
Anode
Graphene
Graphite oxide
Lithium
Lithium batteries
Lithium ion batteries
Nanocomposites
Oxides
Tin dioxide
Tin oxides
title Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20dioxide%20nanoparticles%20impregnated%20in%20graphite%20oxide%20for%20improved%20lithium%20storage%20and%20cyclability%20in%20secondary%20ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Lee,%20Bichna&rft.date=2013-12-15&rft.volume=113&rft.spage=149&rft.epage=155&rft.pages=149-155&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2013.09.093&rft_dat=%3Cproquest_cross%3E1671615165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531006554&rft_id=info:pmid/&rft_els_id=S0013468613018550&rfr_iscdi=true