Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries
SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned natu...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2013-12, Vol.113, p.149-155 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | |
container_start_page | 149 |
container_title | Electrochimica acta |
container_volume | 113 |
creator | Lee, Bichna Han, Su Chul Oh, Minhak Lah, Myoung Soo Sohn, Kee-Sun Pyo, Myoungho |
description | SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO2 nanocomposites (SnO2/rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO2/rGTO nanocomposites (280m2g−1 and 0.27cm3g−1, respectively) were significantly decreased, by comparison with those of the SnO2/rGO nanocomposites (390m2g−1 and 0.39cm3g−1, respectively), which resulted in an enhanced dimensional-stability of SnO2 during the lithium alloying/dealloying processes. As a result, SnO2/rGTO proved to be superior to SnO2/rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template. |
doi_str_mv | 10.1016/j.electacta.2013.09.093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671615165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468613018550</els_id><sourcerecordid>1671615165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-3a2377f7113ccf5bb82b3ff4bfbbb5f638bf1e04e091ec764d1843ec13a4127b3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWB-_wSzdTM1tZpLpUsQXCG50HZLMTU2ZJjVJRVf-dVMrbgsHQjjfudzLIeQC2BQYiKvlFEe0RVdNZwz4lM2r-AGZQC95w_tufkgmrDpNK3pxTE5yXjLGpJBsQr5ffKCDj59-QBp0iGudircjZupX64SLoAsOtEKLpNdvviDdsS6mXyJ-VHv05c1vVjSXmPQCqQ4DtV921MZX62sbz2hjGHSqnxio0aVg8pjPyJHTY8bzv_eUvN7dvtw8NE_P948310-NbaEvDdczLqWTANxa1xnTzwx3rjXOGNM5wXvjAFmLbA5opWgH6FuOFrhuYSYNPyWXu7l14_cN5qJWPlscRx0wbrICIUFAB6Lbj3YcGBNd11ZU7lCbYs4JnVonv6pHKmBq245aqv921LYdxeZVvCavd0msR394TCpbj8Hi4FPl1RD93hk_75CgFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531006554</pqid></control><display><type>article</type><title>Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Bichna ; Han, Su Chul ; Oh, Minhak ; Lah, Myoung Soo ; Sohn, Kee-Sun ; Pyo, Myoungho</creator><creatorcontrib>Lee, Bichna ; Han, Su Chul ; Oh, Minhak ; Lah, Myoung Soo ; Sohn, Kee-Sun ; Pyo, Myoungho</creatorcontrib><description>SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO2 nanocomposites (SnO2/rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO2/rGTO nanocomposites (280m2g−1 and 0.27cm3g−1, respectively) were significantly decreased, by comparison with those of the SnO2/rGO nanocomposites (390m2g−1 and 0.39cm3g−1, respectively), which resulted in an enhanced dimensional-stability of SnO2 during the lithium alloying/dealloying processes. As a result, SnO2/rGTO proved to be superior to SnO2/rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2013.09.093</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alloying ; Anode ; Graphene ; Graphite oxide ; Lithium ; Lithium batteries ; Lithium ion batteries ; Nanocomposites ; Oxides ; Tin dioxide ; Tin oxides</subject><ispartof>Electrochimica acta, 2013-12, Vol.113, p.149-155</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-3a2377f7113ccf5bb82b3ff4bfbbb5f638bf1e04e091ec764d1843ec13a4127b3</citedby><cites>FETCH-LOGICAL-c418t-3a2377f7113ccf5bb82b3ff4bfbbb5f638bf1e04e091ec764d1843ec13a4127b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468613018550$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids></links><search><creatorcontrib>Lee, Bichna</creatorcontrib><creatorcontrib>Han, Su Chul</creatorcontrib><creatorcontrib>Oh, Minhak</creatorcontrib><creatorcontrib>Lah, Myoung Soo</creatorcontrib><creatorcontrib>Sohn, Kee-Sun</creatorcontrib><creatorcontrib>Pyo, Myoungho</creatorcontrib><title>Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries</title><title>Electrochimica acta</title><description>SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO2 nanocomposites (SnO2/rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO2/rGTO nanocomposites (280m2g−1 and 0.27cm3g−1, respectively) were significantly decreased, by comparison with those of the SnO2/rGO nanocomposites (390m2g−1 and 0.39cm3g−1, respectively), which resulted in an enhanced dimensional-stability of SnO2 during the lithium alloying/dealloying processes. As a result, SnO2/rGTO proved to be superior to SnO2/rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template.</description><subject>Alloying</subject><subject>Anode</subject><subject>Graphene</subject><subject>Graphite oxide</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium ion batteries</subject><subject>Nanocomposites</subject><subject>Oxides</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEUhYMoWB-_wSzdTM1tZpLpUsQXCG50HZLMTU2ZJjVJRVf-dVMrbgsHQjjfudzLIeQC2BQYiKvlFEe0RVdNZwz4lM2r-AGZQC95w_tufkgmrDpNK3pxTE5yXjLGpJBsQr5ffKCDj59-QBp0iGudircjZupX64SLoAsOtEKLpNdvviDdsS6mXyJ-VHv05c1vVjSXmPQCqQ4DtV921MZX62sbz2hjGHSqnxio0aVg8pjPyJHTY8bzv_eUvN7dvtw8NE_P948310-NbaEvDdczLqWTANxa1xnTzwx3rjXOGNM5wXvjAFmLbA5opWgH6FuOFrhuYSYNPyWXu7l14_cN5qJWPlscRx0wbrICIUFAB6Lbj3YcGBNd11ZU7lCbYs4JnVonv6pHKmBq245aqv921LYdxeZVvCavd0msR394TCpbj8Hi4FPl1RD93hk_75CgFg</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Lee, Bichna</creator><creator>Han, Su Chul</creator><creator>Oh, Minhak</creator><creator>Lah, Myoung Soo</creator><creator>Sohn, Kee-Sun</creator><creator>Pyo, Myoungho</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131215</creationdate><title>Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries</title><author>Lee, Bichna ; Han, Su Chul ; Oh, Minhak ; Lah, Myoung Soo ; Sohn, Kee-Sun ; Pyo, Myoungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-3a2377f7113ccf5bb82b3ff4bfbbb5f638bf1e04e091ec764d1843ec13a4127b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloying</topic><topic>Anode</topic><topic>Graphene</topic><topic>Graphite oxide</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium ion batteries</topic><topic>Nanocomposites</topic><topic>Oxides</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Bichna</creatorcontrib><creatorcontrib>Han, Su Chul</creatorcontrib><creatorcontrib>Oh, Minhak</creatorcontrib><creatorcontrib>Lah, Myoung Soo</creatorcontrib><creatorcontrib>Sohn, Kee-Sun</creatorcontrib><creatorcontrib>Pyo, Myoungho</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Bichna</au><au>Han, Su Chul</au><au>Oh, Minhak</au><au>Lah, Myoung Soo</au><au>Sohn, Kee-Sun</au><au>Pyo, Myoungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2013-12-15</date><risdate>2013</risdate><volume>113</volume><spage>149</spage><epage>155</epage><pages>149-155</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>SnO2/graphene nanocomposites were prepared from graphite oxide (GTO). Sn2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO2 and reduced GTO (SnO2/rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO2 nanocomposites (SnO2/rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO2/rGTO nanocomposites (280m2g−1 and 0.27cm3g−1, respectively) were significantly decreased, by comparison with those of the SnO2/rGO nanocomposites (390m2g−1 and 0.39cm3g−1, respectively), which resulted in an enhanced dimensional-stability of SnO2 during the lithium alloying/dealloying processes. As a result, SnO2/rGTO proved to be superior to SnO2/rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2013.09.093</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2013-12, Vol.113, p.149-155 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671615165 |
source | Elsevier ScienceDirect Journals |
subjects | Alloying Anode Graphene Graphite oxide Lithium Lithium batteries Lithium ion batteries Nanocomposites Oxides Tin dioxide Tin oxides |
title | Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20dioxide%20nanoparticles%20impregnated%20in%20graphite%20oxide%20for%20improved%20lithium%20storage%20and%20cyclability%20in%20secondary%20ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Lee,%20Bichna&rft.date=2013-12-15&rft.volume=113&rft.spage=149&rft.epage=155&rft.pages=149-155&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2013.09.093&rft_dat=%3Cproquest_cross%3E1671615165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531006554&rft_id=info:pmid/&rft_els_id=S0013468613018550&rfr_iscdi=true |