Spray impact resistance of a superhydrophobic nanocomposite coating
The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2014-08, Vol.60 (8), p.3025-3032 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3032 |
---|---|
container_issue | 8 |
container_start_page | 3025 |
container_title | AIChE journal |
container_volume | 60 |
creator | Davis, Alexander Yeong, Yong Han Steele, Adam Loth, Eric Bayer, Ilker S. |
description | The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting the superhydrophobic samples, a computational study was performed. Such a study is important to understand the interaction between the jet and surface. Impacting velocities for three different testing conditions were estimated to be 14.5, 4.5, and 3.4 m/s. Liquid saturation did not occur immediately, but over time, the high mass flow rate of water led to antiwetting performance degradation. Upon evaporation, contact angle returned to pretest values, indicating little mechanical erosion. This was consistent with scanning electron microscopy which showed that the nano and microstructure was preserved, and with energy‐dispersive X‐ray spectroscopy, which showed no surface chemistry change after testing. However, sliding angle showed stronger degradation, especially at higher impact velocities. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3025–3032, 2014 |
doi_str_mv | 10.1002/aic.14457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671615060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1554953328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5087-8506caded542389eee24a01cf0a9e5470186cc45790e05999f8539bbf1cf64eb3</originalsourceid><addsrcrecordid>eNqF0EFPwjAUB_DGaCKiB7_BEi96GLxu67YelQgSEQ9iPDZdeZMirLMdUb69xakHE-OpafN7r-_9CTml0KMAUV9q1aNJwrI90qEsyULGge2TDgDQ0D_QQ3Lk3NLfoiyPOmTwUFu5DfS6lqoJLDrtGlkpDEwZyMBtarSL7dyaemEKrYJKVkaZdW2cbjBQRja6ej4mB6VcOTz5OrvkcXg9G9yEk_vReHA5CRWDPAtzBqmSc5yzJIpzjohRIoGqEiRHPyrQPFXKj84BgXHOy5zFvChKT9IEi7hLztu-tTWvG3SNWGuncLWSFZqNEzTNaEr9L_A_ZSzhLI6j3NOzX3RpNrbyi3iV-G5pBjt10SpljXMWS1FbvZZ2KyiIXfLCJy8-k_e239o3vcLt31BcjgffFWFb4dPH958KaV9EmsUZE0_Tkbga3k1vo-lMjOIPC8SSrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545066708</pqid></control><display><type>article</type><title>Spray impact resistance of a superhydrophobic nanocomposite coating</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Davis, Alexander ; Yeong, Yong Han ; Steele, Adam ; Loth, Eric ; Bayer, Ilker S.</creator><creatorcontrib>Davis, Alexander ; Yeong, Yong Han ; Steele, Adam ; Loth, Eric ; Bayer, Ilker S.</creatorcontrib><description>The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting the superhydrophobic samples, a computational study was performed. Such a study is important to understand the interaction between the jet and surface. Impacting velocities for three different testing conditions were estimated to be 14.5, 4.5, and 3.4 m/s. Liquid saturation did not occur immediately, but over time, the high mass flow rate of water led to antiwetting performance degradation. Upon evaporation, contact angle returned to pretest values, indicating little mechanical erosion. This was consistent with scanning electron microscopy which showed that the nano and microstructure was preserved, and with energy‐dispersive X‐ray spectroscopy, which showed no surface chemistry change after testing. However, sliding angle showed stronger degradation, especially at higher impact velocities. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3025–3032, 2014</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14457</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Contact angle ; Droplets ; durability ; Erosion ; Hydrophobic surfaces ; Icing ; impact ; Microstructure ; nanoclay ; Nanocomposites ; Nanostructure ; Perfluoroalkyls ; Polyurethane ; Pressure ; Scanning electron microscopy ; spray ; Sprayers ; Sprays ; Thin film coatings</subject><ispartof>AIChE journal, 2014-08, Vol.60 (8), p.3025-3032</ispartof><rights>2014 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5087-8506caded542389eee24a01cf0a9e5470186cc45790e05999f8539bbf1cf64eb3</citedby><cites>FETCH-LOGICAL-c5087-8506caded542389eee24a01cf0a9e5470186cc45790e05999f8539bbf1cf64eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Davis, Alexander</creatorcontrib><creatorcontrib>Yeong, Yong Han</creatorcontrib><creatorcontrib>Steele, Adam</creatorcontrib><creatorcontrib>Loth, Eric</creatorcontrib><creatorcontrib>Bayer, Ilker S.</creatorcontrib><title>Spray impact resistance of a superhydrophobic nanocomposite coating</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting the superhydrophobic samples, a computational study was performed. Such a study is important to understand the interaction between the jet and surface. Impacting velocities for three different testing conditions were estimated to be 14.5, 4.5, and 3.4 m/s. Liquid saturation did not occur immediately, but over time, the high mass flow rate of water led to antiwetting performance degradation. Upon evaporation, contact angle returned to pretest values, indicating little mechanical erosion. This was consistent with scanning electron microscopy which showed that the nano and microstructure was preserved, and with energy‐dispersive X‐ray spectroscopy, which showed no surface chemistry change after testing. However, sliding angle showed stronger degradation, especially at higher impact velocities. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3025–3032, 2014</description><subject>Contact angle</subject><subject>Droplets</subject><subject>durability</subject><subject>Erosion</subject><subject>Hydrophobic surfaces</subject><subject>Icing</subject><subject>impact</subject><subject>Microstructure</subject><subject>nanoclay</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Perfluoroalkyls</subject><subject>Polyurethane</subject><subject>Pressure</subject><subject>Scanning electron microscopy</subject><subject>spray</subject><subject>Sprayers</subject><subject>Sprays</subject><subject>Thin film coatings</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0EFPwjAUB_DGaCKiB7_BEi96GLxu67YelQgSEQ9iPDZdeZMirLMdUb69xakHE-OpafN7r-_9CTml0KMAUV9q1aNJwrI90qEsyULGge2TDgDQ0D_QQ3Lk3NLfoiyPOmTwUFu5DfS6lqoJLDrtGlkpDEwZyMBtarSL7dyaemEKrYJKVkaZdW2cbjBQRja6ej4mB6VcOTz5OrvkcXg9G9yEk_vReHA5CRWDPAtzBqmSc5yzJIpzjohRIoGqEiRHPyrQPFXKj84BgXHOy5zFvChKT9IEi7hLztu-tTWvG3SNWGuncLWSFZqNEzTNaEr9L_A_ZSzhLI6j3NOzX3RpNrbyi3iV-G5pBjt10SpljXMWS1FbvZZ2KyiIXfLCJy8-k_e239o3vcLt31BcjgffFWFb4dPH958KaV9EmsUZE0_Tkbga3k1vo-lMjOIPC8SSrg</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Davis, Alexander</creator><creator>Yeong, Yong Han</creator><creator>Steele, Adam</creator><creator>Loth, Eric</creator><creator>Bayer, Ilker S.</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>FR3</scope></search><sort><creationdate>201408</creationdate><title>Spray impact resistance of a superhydrophobic nanocomposite coating</title><author>Davis, Alexander ; Yeong, Yong Han ; Steele, Adam ; Loth, Eric ; Bayer, Ilker S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5087-8506caded542389eee24a01cf0a9e5470186cc45790e05999f8539bbf1cf64eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Contact angle</topic><topic>Droplets</topic><topic>durability</topic><topic>Erosion</topic><topic>Hydrophobic surfaces</topic><topic>Icing</topic><topic>impact</topic><topic>Microstructure</topic><topic>nanoclay</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Perfluoroalkyls</topic><topic>Polyurethane</topic><topic>Pressure</topic><topic>Scanning electron microscopy</topic><topic>spray</topic><topic>Sprayers</topic><topic>Sprays</topic><topic>Thin film coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Alexander</creatorcontrib><creatorcontrib>Yeong, Yong Han</creatorcontrib><creatorcontrib>Steele, Adam</creatorcontrib><creatorcontrib>Loth, Eric</creatorcontrib><creatorcontrib>Bayer, Ilker S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Alexander</au><au>Yeong, Yong Han</au><au>Steele, Adam</au><au>Loth, Eric</au><au>Bayer, Ilker S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spray impact resistance of a superhydrophobic nanocomposite coating</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2014-08</date><risdate>2014</risdate><volume>60</volume><issue>8</issue><spage>3025</spage><epage>3032</epage><pages>3025-3032</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting the superhydrophobic samples, a computational study was performed. Such a study is important to understand the interaction between the jet and surface. Impacting velocities for three different testing conditions were estimated to be 14.5, 4.5, and 3.4 m/s. Liquid saturation did not occur immediately, but over time, the high mass flow rate of water led to antiwetting performance degradation. Upon evaporation, contact angle returned to pretest values, indicating little mechanical erosion. This was consistent with scanning electron microscopy which showed that the nano and microstructure was preserved, and with energy‐dispersive X‐ray spectroscopy, which showed no surface chemistry change after testing. However, sliding angle showed stronger degradation, especially at higher impact velocities. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3025–3032, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14457</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2014-08, Vol.60 (8), p.3025-3032 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671615060 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Contact angle Droplets durability Erosion Hydrophobic surfaces Icing impact Microstructure nanoclay Nanocomposites Nanostructure Perfluoroalkyls Polyurethane Pressure Scanning electron microscopy spray Sprayers Sprays Thin film coatings |
title | Spray impact resistance of a superhydrophobic nanocomposite coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spray%20impact%20resistance%20of%20a%20superhydrophobic%20nanocomposite%20coating&rft.jtitle=AIChE%20journal&rft.au=Davis,%20Alexander&rft.date=2014-08&rft.volume=60&rft.issue=8&rft.spage=3025&rft.epage=3032&rft.pages=3025-3032&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14457&rft_dat=%3Cproquest_cross%3E1554953328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545066708&rft_id=info:pmid/&rfr_iscdi=true |