Spray impact resistance of a superhydrophobic nanocomposite coating

The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2014-08, Vol.60 (8), p.3025-3032
Hauptverfasser: Davis, Alexander, Yeong, Yong Han, Steele, Adam, Loth, Eric, Bayer, Ilker S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3032
container_issue 8
container_start_page 3025
container_title AIChE journal
container_volume 60
creator Davis, Alexander
Yeong, Yong Han
Steele, Adam
Loth, Eric
Bayer, Ilker S.
description The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting the superhydrophobic samples, a computational study was performed. Such a study is important to understand the interaction between the jet and surface. Impacting velocities for three different testing conditions were estimated to be 14.5, 4.5, and 3.4 m/s. Liquid saturation did not occur immediately, but over time, the high mass flow rate of water led to antiwetting performance degradation. Upon evaporation, contact angle returned to pretest values, indicating little mechanical erosion. This was consistent with scanning electron microscopy which showed that the nano and microstructure was preserved, and with energy‐dispersive X‐ray spectroscopy, which showed no surface chemistry change after testing. However, sliding angle showed stronger degradation, especially at higher impact velocities. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3025–3032, 2014
doi_str_mv 10.1002/aic.14457
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671615060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1554953328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5087-8506caded542389eee24a01cf0a9e5470186cc45790e05999f8539bbf1cf64eb3</originalsourceid><addsrcrecordid>eNqF0EFPwjAUB_DGaCKiB7_BEi96GLxu67YelQgSEQ9iPDZdeZMirLMdUb69xakHE-OpafN7r-_9CTml0KMAUV9q1aNJwrI90qEsyULGge2TDgDQ0D_QQ3Lk3NLfoiyPOmTwUFu5DfS6lqoJLDrtGlkpDEwZyMBtarSL7dyaemEKrYJKVkaZdW2cbjBQRja6ej4mB6VcOTz5OrvkcXg9G9yEk_vReHA5CRWDPAtzBqmSc5yzJIpzjohRIoGqEiRHPyrQPFXKj84BgXHOy5zFvChKT9IEi7hLztu-tTWvG3SNWGuncLWSFZqNEzTNaEr9L_A_ZSzhLI6j3NOzX3RpNrbyi3iV-G5pBjt10SpljXMWS1FbvZZ2KyiIXfLCJy8-k_e239o3vcLt31BcjgffFWFb4dPH958KaV9EmsUZE0_Tkbga3k1vo-lMjOIPC8SSrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545066708</pqid></control><display><type>article</type><title>Spray impact resistance of a superhydrophobic nanocomposite coating</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Davis, Alexander ; Yeong, Yong Han ; Steele, Adam ; Loth, Eric ; Bayer, Ilker S.</creator><creatorcontrib>Davis, Alexander ; Yeong, Yong Han ; Steele, Adam ; Loth, Eric ; Bayer, Ilker S.</creatorcontrib><description>The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting the superhydrophobic samples, a computational study was performed. Such a study is important to understand the interaction between the jet and surface. Impacting velocities for three different testing conditions were estimated to be 14.5, 4.5, and 3.4 m/s. Liquid saturation did not occur immediately, but over time, the high mass flow rate of water led to antiwetting performance degradation. Upon evaporation, contact angle returned to pretest values, indicating little mechanical erosion. This was consistent with scanning electron microscopy which showed that the nano and microstructure was preserved, and with energy‐dispersive X‐ray spectroscopy, which showed no surface chemistry change after testing. However, sliding angle showed stronger degradation, especially at higher impact velocities. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3025–3032, 2014</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14457</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Contact angle ; Droplets ; durability ; Erosion ; Hydrophobic surfaces ; Icing ; impact ; Microstructure ; nanoclay ; Nanocomposites ; Nanostructure ; Perfluoroalkyls ; Polyurethane ; Pressure ; Scanning electron microscopy ; spray ; Sprayers ; Sprays ; Thin film coatings</subject><ispartof>AIChE journal, 2014-08, Vol.60 (8), p.3025-3032</ispartof><rights>2014 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5087-8506caded542389eee24a01cf0a9e5470186cc45790e05999f8539bbf1cf64eb3</citedby><cites>FETCH-LOGICAL-c5087-8506caded542389eee24a01cf0a9e5470186cc45790e05999f8539bbf1cf64eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.14457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.14457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Davis, Alexander</creatorcontrib><creatorcontrib>Yeong, Yong Han</creatorcontrib><creatorcontrib>Steele, Adam</creatorcontrib><creatorcontrib>Loth, Eric</creatorcontrib><creatorcontrib>Bayer, Ilker S.</creatorcontrib><title>Spray impact resistance of a superhydrophobic nanocomposite coating</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting the superhydrophobic samples, a computational study was performed. Such a study is important to understand the interaction between the jet and surface. Impacting velocities for three different testing conditions were estimated to be 14.5, 4.5, and 3.4 m/s. Liquid saturation did not occur immediately, but over time, the high mass flow rate of water led to antiwetting performance degradation. Upon evaporation, contact angle returned to pretest values, indicating little mechanical erosion. This was consistent with scanning electron microscopy which showed that the nano and microstructure was preserved, and with energy‐dispersive X‐ray spectroscopy, which showed no surface chemistry change after testing. However, sliding angle showed stronger degradation, especially at higher impact velocities. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3025–3032, 2014</description><subject>Contact angle</subject><subject>Droplets</subject><subject>durability</subject><subject>Erosion</subject><subject>Hydrophobic surfaces</subject><subject>Icing</subject><subject>impact</subject><subject>Microstructure</subject><subject>nanoclay</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Perfluoroalkyls</subject><subject>Polyurethane</subject><subject>Pressure</subject><subject>Scanning electron microscopy</subject><subject>spray</subject><subject>Sprayers</subject><subject>Sprays</subject><subject>Thin film coatings</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0EFPwjAUB_DGaCKiB7_BEi96GLxu67YelQgSEQ9iPDZdeZMirLMdUb69xakHE-OpafN7r-_9CTml0KMAUV9q1aNJwrI90qEsyULGge2TDgDQ0D_QQ3Lk3NLfoiyPOmTwUFu5DfS6lqoJLDrtGlkpDEwZyMBtarSL7dyaemEKrYJKVkaZdW2cbjBQRja6ej4mB6VcOTz5OrvkcXg9G9yEk_vReHA5CRWDPAtzBqmSc5yzJIpzjohRIoGqEiRHPyrQPFXKj84BgXHOy5zFvChKT9IEi7hLztu-tTWvG3SNWGuncLWSFZqNEzTNaEr9L_A_ZSzhLI6j3NOzX3RpNrbyi3iV-G5pBjt10SpljXMWS1FbvZZ2KyiIXfLCJy8-k_e239o3vcLt31BcjgffFWFb4dPH958KaV9EmsUZE0_Tkbga3k1vo-lMjOIPC8SSrg</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Davis, Alexander</creator><creator>Yeong, Yong Han</creator><creator>Steele, Adam</creator><creator>Loth, Eric</creator><creator>Bayer, Ilker S.</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>FR3</scope></search><sort><creationdate>201408</creationdate><title>Spray impact resistance of a superhydrophobic nanocomposite coating</title><author>Davis, Alexander ; Yeong, Yong Han ; Steele, Adam ; Loth, Eric ; Bayer, Ilker S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5087-8506caded542389eee24a01cf0a9e5470186cc45790e05999f8539bbf1cf64eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Contact angle</topic><topic>Droplets</topic><topic>durability</topic><topic>Erosion</topic><topic>Hydrophobic surfaces</topic><topic>Icing</topic><topic>impact</topic><topic>Microstructure</topic><topic>nanoclay</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Perfluoroalkyls</topic><topic>Polyurethane</topic><topic>Pressure</topic><topic>Scanning electron microscopy</topic><topic>spray</topic><topic>Sprayers</topic><topic>Sprays</topic><topic>Thin film coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Alexander</creatorcontrib><creatorcontrib>Yeong, Yong Han</creatorcontrib><creatorcontrib>Steele, Adam</creatorcontrib><creatorcontrib>Loth, Eric</creatorcontrib><creatorcontrib>Bayer, Ilker S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Alexander</au><au>Yeong, Yong Han</au><au>Steele, Adam</au><au>Loth, Eric</au><au>Bayer, Ilker S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spray impact resistance of a superhydrophobic nanocomposite coating</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2014-08</date><risdate>2014</risdate><volume>60</volume><issue>8</issue><spage>3025</spage><epage>3032</epage><pages>3025-3032</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The performance of a polyurethane/organoclay superhydrophobic nanocomposite modified with perfluoroalkyl methacrylic copolymer in the presence of a high‐pressure air‐water spray which mimics an icing cloud impact is investigated in this study. To quantify the average velocites of droplets impacting the superhydrophobic samples, a computational study was performed. Such a study is important to understand the interaction between the jet and surface. Impacting velocities for three different testing conditions were estimated to be 14.5, 4.5, and 3.4 m/s. Liquid saturation did not occur immediately, but over time, the high mass flow rate of water led to antiwetting performance degradation. Upon evaporation, contact angle returned to pretest values, indicating little mechanical erosion. This was consistent with scanning electron microscopy which showed that the nano and microstructure was preserved, and with energy‐dispersive X‐ray spectroscopy, which showed no surface chemistry change after testing. However, sliding angle showed stronger degradation, especially at higher impact velocities. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3025–3032, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14457</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2014-08, Vol.60 (8), p.3025-3032
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1671615060
source Wiley Online Library Journals Frontfile Complete
subjects Contact angle
Droplets
durability
Erosion
Hydrophobic surfaces
Icing
impact
Microstructure
nanoclay
Nanocomposites
Nanostructure
Perfluoroalkyls
Polyurethane
Pressure
Scanning electron microscopy
spray
Sprayers
Sprays
Thin film coatings
title Spray impact resistance of a superhydrophobic nanocomposite coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spray%20impact%20resistance%20of%20a%20superhydrophobic%20nanocomposite%20coating&rft.jtitle=AIChE%20journal&rft.au=Davis,%20Alexander&rft.date=2014-08&rft.volume=60&rft.issue=8&rft.spage=3025&rft.epage=3032&rft.pages=3025-3032&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14457&rft_dat=%3Cproquest_cross%3E1554953328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545066708&rft_id=info:pmid/&rfr_iscdi=true