Multivariate Block-Support Simulation of the Yandi Iron Ore Deposit, Western Australia

Mineral deposits frequently contain several elements of interest that are spatially correlated and require the use of joint geostatistical simulation techniques in order to generate models preserving their spatial relationships. Although joint-simulation methods have long been available, they are im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geosciences 2012-05, Vol.44 (4), p.449-468
Hauptverfasser: Boucher, Alexandre, Dimitrakopoulos, Roussos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 4
container_start_page 449
container_title Mathematical geosciences
container_volume 44
creator Boucher, Alexandre
Dimitrakopoulos, Roussos
description Mineral deposits frequently contain several elements of interest that are spatially correlated and require the use of joint geostatistical simulation techniques in order to generate models preserving their spatial relationships. Although joint-simulation methods have long been available, they are impractical when it comes to more than three variables and mid to large size deposits. This paper presents the application of block-support simulation of a multi-element mineral deposit using minimum/maximum autocorrelation factors to facilitate the computationally efficient joint simulation of large, multivariable deposits. The algorithm utilized, termed dbmafsim , transforms point-scale spatial attributes of a mineral deposit into uncorrelated service variables leading to the generation of simulated realizations of block-scale models of the attributes of interest of a deposit. The dbmafsim algorithm is utilized at the Yandi iron ore deposit in Western Australia to simulate five cross-correlated elements, namely Fe, SiO 2 , Al 2 O 3 , P and LOI, that are all critical in defining the quality of iron ore being produced. The block-scale simulations reproduce the direct- and cross-variograms of the elements even though only the direct variograms of the service variables have to be modeled. The application shows the efficiency, excellent performance and practical contribution of the dbmafsim algorithm in simulating large multi-element deposits.
doi_str_mv 10.1007/s11004-012-9402-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671612721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671612721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-b472e07cbc0a4b6e02ba4edb88686c158751efc7b790a12865883b857fdbdfd63</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhosouK7-AG8BLx6sZtI0SY_r-rWwsof1A08lbVPN2m1qkgr-e7NURATxMjMMzzvMzBtFh4BPAWN-5iAkGmMgcUZxCFvRCASnscjSZPu7ZrAb7Tm3wphBksIoerjtG6_fpdXSK3TemPI1XvZdZ6xHS73uG-m1aZGpkX9R6Em2lUYzGzoLq9CF6ozT_gQ9KueVbdGkd97KRsv9aKeWjVMHX3kc3V9d3k1v4vniejadzGNJqfBxQTlRmJdFiSUtmMKkkFRVhRBMsBJSwVNQdckLnmEJRLBUiKQQKa-roqorloyj42FuZ81bH7bI19qVqmlkq0zvcmAcGBBO4H8UA884Dx8M6NEvdGV624ZDNhQhiUgEDRQMVGmNc1bVeWf1WtqPAOUbU_LBlDxI8o0peRY0ZNC4wLbPyv6c_JfoEzTFje4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012238384</pqid></control><display><type>article</type><title>Multivariate Block-Support Simulation of the Yandi Iron Ore Deposit, Western Australia</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boucher, Alexandre ; Dimitrakopoulos, Roussos</creator><creatorcontrib>Boucher, Alexandre ; Dimitrakopoulos, Roussos</creatorcontrib><description>Mineral deposits frequently contain several elements of interest that are spatially correlated and require the use of joint geostatistical simulation techniques in order to generate models preserving their spatial relationships. Although joint-simulation methods have long been available, they are impractical when it comes to more than three variables and mid to large size deposits. This paper presents the application of block-support simulation of a multi-element mineral deposit using minimum/maximum autocorrelation factors to facilitate the computationally efficient joint simulation of large, multivariable deposits. The algorithm utilized, termed dbmafsim , transforms point-scale spatial attributes of a mineral deposit into uncorrelated service variables leading to the generation of simulated realizations of block-scale models of the attributes of interest of a deposit. The dbmafsim algorithm is utilized at the Yandi iron ore deposit in Western Australia to simulate five cross-correlated elements, namely Fe, SiO 2 , Al 2 O 3 , P and LOI, that are all critical in defining the quality of iron ore being produced. The block-scale simulations reproduce the direct- and cross-variograms of the elements even though only the direct variograms of the service variables have to be modeled. The application shows the efficiency, excellent performance and practical contribution of the dbmafsim algorithm in simulating large multi-element deposits.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-012-9402-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Blocking ; Chemistry and Earth Sciences ; Computer Science ; Computer simulation ; Deposition ; Earth and Environmental Science ; Earth Sciences ; Geostatistics ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Iron ; Iron ores ; Mathematical analysis ; Mathematical models ; Mineral deposits ; Multivariate analysis ; Physics ; Scale models ; Special Issue ; Statistics for Engineering</subject><ispartof>Mathematical geosciences, 2012-05, Vol.44 (4), p.449-468</ispartof><rights>International Association for Mathematical Geosciences 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-b472e07cbc0a4b6e02ba4edb88686c158751efc7b790a12865883b857fdbdfd63</citedby><cites>FETCH-LOGICAL-a448t-b472e07cbc0a4b6e02ba4edb88686c158751efc7b790a12865883b857fdbdfd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11004-012-9402-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11004-012-9402-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Boucher, Alexandre</creatorcontrib><creatorcontrib>Dimitrakopoulos, Roussos</creatorcontrib><title>Multivariate Block-Support Simulation of the Yandi Iron Ore Deposit, Western Australia</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><description>Mineral deposits frequently contain several elements of interest that are spatially correlated and require the use of joint geostatistical simulation techniques in order to generate models preserving their spatial relationships. Although joint-simulation methods have long been available, they are impractical when it comes to more than three variables and mid to large size deposits. This paper presents the application of block-support simulation of a multi-element mineral deposit using minimum/maximum autocorrelation factors to facilitate the computationally efficient joint simulation of large, multivariable deposits. The algorithm utilized, termed dbmafsim , transforms point-scale spatial attributes of a mineral deposit into uncorrelated service variables leading to the generation of simulated realizations of block-scale models of the attributes of interest of a deposit. The dbmafsim algorithm is utilized at the Yandi iron ore deposit in Western Australia to simulate five cross-correlated elements, namely Fe, SiO 2 , Al 2 O 3 , P and LOI, that are all critical in defining the quality of iron ore being produced. The block-scale simulations reproduce the direct- and cross-variograms of the elements even though only the direct variograms of the service variables have to be modeled. The application shows the efficiency, excellent performance and practical contribution of the dbmafsim algorithm in simulating large multi-element deposits.</description><subject>Algorithms</subject><subject>Blocking</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Deposition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geostatistics</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Iron</subject><subject>Iron ores</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mineral deposits</subject><subject>Multivariate analysis</subject><subject>Physics</subject><subject>Scale models</subject><subject>Special Issue</subject><subject>Statistics for Engineering</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LxDAQhosouK7-AG8BLx6sZtI0SY_r-rWwsof1A08lbVPN2m1qkgr-e7NURATxMjMMzzvMzBtFh4BPAWN-5iAkGmMgcUZxCFvRCASnscjSZPu7ZrAb7Tm3wphBksIoerjtG6_fpdXSK3TemPI1XvZdZ6xHS73uG-m1aZGpkX9R6Em2lUYzGzoLq9CF6ozT_gQ9KueVbdGkd97KRsv9aKeWjVMHX3kc3V9d3k1v4vniejadzGNJqfBxQTlRmJdFiSUtmMKkkFRVhRBMsBJSwVNQdckLnmEJRLBUiKQQKa-roqorloyj42FuZ81bH7bI19qVqmlkq0zvcmAcGBBO4H8UA884Dx8M6NEvdGV624ZDNhQhiUgEDRQMVGmNc1bVeWf1WtqPAOUbU_LBlDxI8o0peRY0ZNC4wLbPyv6c_JfoEzTFje4</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Boucher, Alexandre</creator><creator>Dimitrakopoulos, Roussos</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QF</scope><scope>JG9</scope></search><sort><creationdate>20120501</creationdate><title>Multivariate Block-Support Simulation of the Yandi Iron Ore Deposit, Western Australia</title><author>Boucher, Alexandre ; Dimitrakopoulos, Roussos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-b472e07cbc0a4b6e02ba4edb88686c158751efc7b790a12865883b857fdbdfd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Blocking</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Deposition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geostatistics</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Iron</topic><topic>Iron ores</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mineral deposits</topic><topic>Multivariate analysis</topic><topic>Physics</topic><topic>Scale models</topic><topic>Special Issue</topic><topic>Statistics for Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boucher, Alexandre</creatorcontrib><creatorcontrib>Dimitrakopoulos, Roussos</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aluminium Industry Abstracts</collection><collection>Materials Research Database</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boucher, Alexandre</au><au>Dimitrakopoulos, Roussos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Block-Support Simulation of the Yandi Iron Ore Deposit, Western Australia</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>44</volume><issue>4</issue><spage>449</spage><epage>468</epage><pages>449-468</pages><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>Mineral deposits frequently contain several elements of interest that are spatially correlated and require the use of joint geostatistical simulation techniques in order to generate models preserving their spatial relationships. Although joint-simulation methods have long been available, they are impractical when it comes to more than three variables and mid to large size deposits. This paper presents the application of block-support simulation of a multi-element mineral deposit using minimum/maximum autocorrelation factors to facilitate the computationally efficient joint simulation of large, multivariable deposits. The algorithm utilized, termed dbmafsim , transforms point-scale spatial attributes of a mineral deposit into uncorrelated service variables leading to the generation of simulated realizations of block-scale models of the attributes of interest of a deposit. The dbmafsim algorithm is utilized at the Yandi iron ore deposit in Western Australia to simulate five cross-correlated elements, namely Fe, SiO 2 , Al 2 O 3 , P and LOI, that are all critical in defining the quality of iron ore being produced. The block-scale simulations reproduce the direct- and cross-variograms of the elements even though only the direct variograms of the service variables have to be modeled. The application shows the efficiency, excellent performance and practical contribution of the dbmafsim algorithm in simulating large multi-element deposits.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11004-012-9402-9</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1874-8961
ispartof Mathematical geosciences, 2012-05, Vol.44 (4), p.449-468
issn 1874-8961
1874-8953
language eng
recordid cdi_proquest_miscellaneous_1671612721
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Blocking
Chemistry and Earth Sciences
Computer Science
Computer simulation
Deposition
Earth and Environmental Science
Earth Sciences
Geostatistics
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Iron
Iron ores
Mathematical analysis
Mathematical models
Mineral deposits
Multivariate analysis
Physics
Scale models
Special Issue
Statistics for Engineering
title Multivariate Block-Support Simulation of the Yandi Iron Ore Deposit, Western Australia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Block-Support%20Simulation%20of%20the%20Yandi%20Iron%20Ore%20Deposit,%20Western%20Australia&rft.jtitle=Mathematical%20geosciences&rft.au=Boucher,%20Alexandre&rft.date=2012-05-01&rft.volume=44&rft.issue=4&rft.spage=449&rft.epage=468&rft.pages=449-468&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-012-9402-9&rft_dat=%3Cproquest_cross%3E1671612721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1012238384&rft_id=info:pmid/&rfr_iscdi=true