Performance Analysis of Hybrid Fusion in Cognitive Radio Networks

Spectrum sensing is a crucial issue in cognitive radio networks for primary user detection. Cooperative sensing based on energy detection in the cognitive radio network with multiple antennas base-station is considered in this letter. To improve the sensing performance, we investigate hybrid fusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-01, Vol.479-480 (Applied Science and Precision Engineering Innovation), p.1027-1031
Hauptverfasser: Liu, Yun Xue, Fan, Wen Qiang, Guo, Man Man
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1031
container_issue Applied Science and Precision Engineering Innovation
container_start_page 1027
container_title Applied Mechanics and Materials
container_volume 479-480
creator Liu, Yun Xue
Fan, Wen Qiang
Guo, Man Man
description Spectrum sensing is a crucial issue in cognitive radio networks for primary user detection. Cooperative sensing based on energy detection in the cognitive radio network with multiple antennas base-station is considered in this letter. To improve the sensing performance, we investigate hybrid fusion of the observed energies from the base-station and decisions (1bit, hard information) from different cognitive radio (CR) users around the base-station. Further, we present an optimized scheme where the global detection probability can be maximized according to the Neyman-Pearson criterion. Finally the impact of the change of parameters (Signal to Noise Ratio and number of CR users) in the optimized scheme is analyzed. Numerical simulations and extensive analysis confirm that hybrid fusion base on the optimized scheme is a good choice, also, Signal to Noise Ratio (SNR) and number of CR users does not have influence on the optimized scheme
doi_str_mv 10.4028/www.scientific.net/AMM.479-480.1027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671610199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147767141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c26485e6d60f0f7abd67cf1586b9e1b944e31cd394f05458109d6442f0f1695e3</originalsourceid><addsrcrecordid>eNqVkMtOAjEUQBsfiYj8wyRuTMwM7bTTx5IQEBNQY3TdDJ1Wi9BiO0j4e4uYaNy5uot7cm7uAeAawYLAkve3220RldWutcaqwum2P5jNCsJETjgsECzZEeggSsucEV4eg55gHEPMeCUIoydfO5gLjOkZOI9xASEliPAOGDzoYHxY1U7pbODq5S7amHmTTXbzYJtsvInWu8y6bOhfnG3th84e68b67E63Wx_e4gU4NfUy6t737ILn8ehpOMmn9ze3w8E0VxjzNlclJbzStKHQQMPqeUOZMqjidC40mgtCNEaqwYIYWJGKIygaSkiZYERFpXEXXB286-DfNzq2cmWj0stl7bTfRIkoQxRBJERCL_-gC78J6blEEVoRDGFFEzU8UCr4GIM2ch3sqg47iaDcZ5cpu_zJLlN2mbLLlF2m7HKfPVlGB0sbahdbrV5_HfuH5xNwYpHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465430056</pqid></control><display><type>article</type><title>Performance Analysis of Hybrid Fusion in Cognitive Radio Networks</title><source>Scientific.net Journals</source><creator>Liu, Yun Xue ; Fan, Wen Qiang ; Guo, Man Man</creator><creatorcontrib>Liu, Yun Xue ; Fan, Wen Qiang ; Guo, Man Man</creatorcontrib><description>Spectrum sensing is a crucial issue in cognitive radio networks for primary user detection. Cooperative sensing based on energy detection in the cognitive radio network with multiple antennas base-station is considered in this letter. To improve the sensing performance, we investigate hybrid fusion of the observed energies from the base-station and decisions (1bit, hard information) from different cognitive radio (CR) users around the base-station. Further, we present an optimized scheme where the global detection probability can be maximized according to the Neyman-Pearson criterion. Finally the impact of the change of parameters (Signal to Noise Ratio and number of CR users) in the optimized scheme is analyzed. Numerical simulations and extensive analysis confirm that hybrid fusion base on the optimized scheme is a good choice, also, Signal to Noise Ratio (SNR) and number of CR users does not have influence on the optimized scheme</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859476</identifier><identifier>ISBN: 3037859474</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.479-480.1027</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Antennas ; Cognitive radio ; Detection ; Energy use ; Impact analysis ; Mathematical models ; Networks ; Signal to noise ratio</subject><ispartof>Applied Mechanics and Materials, 2014-01, Vol.479-480 (Applied Science and Precision Engineering Innovation), p.1027-1031</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-c26485e6d60f0f7abd67cf1586b9e1b944e31cd394f05458109d6442f0f1695e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2872?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liu, Yun Xue</creatorcontrib><creatorcontrib>Fan, Wen Qiang</creatorcontrib><creatorcontrib>Guo, Man Man</creatorcontrib><title>Performance Analysis of Hybrid Fusion in Cognitive Radio Networks</title><title>Applied Mechanics and Materials</title><description>Spectrum sensing is a crucial issue in cognitive radio networks for primary user detection. Cooperative sensing based on energy detection in the cognitive radio network with multiple antennas base-station is considered in this letter. To improve the sensing performance, we investigate hybrid fusion of the observed energies from the base-station and decisions (1bit, hard information) from different cognitive radio (CR) users around the base-station. Further, we present an optimized scheme where the global detection probability can be maximized according to the Neyman-Pearson criterion. Finally the impact of the change of parameters (Signal to Noise Ratio and number of CR users) in the optimized scheme is analyzed. Numerical simulations and extensive analysis confirm that hybrid fusion base on the optimized scheme is a good choice, also, Signal to Noise Ratio (SNR) and number of CR users does not have influence on the optimized scheme</description><subject>Antennas</subject><subject>Cognitive radio</subject><subject>Detection</subject><subject>Energy use</subject><subject>Impact analysis</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Signal to noise ratio</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859476</isbn><isbn>3037859474</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkMtOAjEUQBsfiYj8wyRuTMwM7bTTx5IQEBNQY3TdDJ1Wi9BiO0j4e4uYaNy5uot7cm7uAeAawYLAkve3220RldWutcaqwum2P5jNCsJETjgsECzZEeggSsucEV4eg55gHEPMeCUIoydfO5gLjOkZOI9xASEliPAOGDzoYHxY1U7pbODq5S7amHmTTXbzYJtsvInWu8y6bOhfnG3th84e68b67E63Wx_e4gU4NfUy6t737ILn8ehpOMmn9ze3w8E0VxjzNlclJbzStKHQQMPqeUOZMqjidC40mgtCNEaqwYIYWJGKIygaSkiZYERFpXEXXB286-DfNzq2cmWj0stl7bTfRIkoQxRBJERCL_-gC78J6blEEVoRDGFFEzU8UCr4GIM2ch3sqg47iaDcZ5cpu_zJLlN2mbLLlF2m7HKfPVlGB0sbahdbrV5_HfuH5xNwYpHg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Liu, Yun Xue</creator><creator>Fan, Wen Qiang</creator><creator>Guo, Man Man</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>Performance Analysis of Hybrid Fusion in Cognitive Radio Networks</title><author>Liu, Yun Xue ; Fan, Wen Qiang ; Guo, Man Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c26485e6d60f0f7abd67cf1586b9e1b944e31cd394f05458109d6442f0f1695e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antennas</topic><topic>Cognitive radio</topic><topic>Detection</topic><topic>Energy use</topic><topic>Impact analysis</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yun Xue</creatorcontrib><creatorcontrib>Fan, Wen Qiang</creatorcontrib><creatorcontrib>Guo, Man Man</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yun Xue</au><au>Fan, Wen Qiang</au><au>Guo, Man Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of Hybrid Fusion in Cognitive Radio Networks</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>479-480</volume><issue>Applied Science and Precision Engineering Innovation</issue><spage>1027</spage><epage>1031</epage><pages>1027-1031</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859476</isbn><isbn>3037859474</isbn><abstract>Spectrum sensing is a crucial issue in cognitive radio networks for primary user detection. Cooperative sensing based on energy detection in the cognitive radio network with multiple antennas base-station is considered in this letter. To improve the sensing performance, we investigate hybrid fusion of the observed energies from the base-station and decisions (1bit, hard information) from different cognitive radio (CR) users around the base-station. Further, we present an optimized scheme where the global detection probability can be maximized according to the Neyman-Pearson criterion. Finally the impact of the change of parameters (Signal to Noise Ratio and number of CR users) in the optimized scheme is analyzed. Numerical simulations and extensive analysis confirm that hybrid fusion base on the optimized scheme is a good choice, also, Signal to Noise Ratio (SNR) and number of CR users does not have influence on the optimized scheme</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.479-480.1027</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-01, Vol.479-480 (Applied Science and Precision Engineering Innovation), p.1027-1031
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1671610199
source Scientific.net Journals
subjects Antennas
Cognitive radio
Detection
Energy use
Impact analysis
Mathematical models
Networks
Signal to noise ratio
title Performance Analysis of Hybrid Fusion in Cognitive Radio Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20Hybrid%20Fusion%20in%20Cognitive%20Radio%20Networks&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Liu,%20Yun%20Xue&rft.date=2014-01-01&rft.volume=479-480&rft.issue=Applied%20Science%20and%20Precision%20Engineering%20Innovation&rft.spage=1027&rft.epage=1031&rft.pages=1027-1031&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859476&rft.isbn_list=3037859474&rft_id=info:doi/10.4028/www.scientific.net/AMM.479-480.1027&rft_dat=%3Cproquest_cross%3E3147767141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465430056&rft_id=info:pmid/&rfr_iscdi=true