Long-term, non-local coastline responses to local shoreline stabilization
The future of large‐scale coastline evolution will be strongly coupled to human manipulations designed to prevent erosion. We explore the consequences of this coupling using a numerical model for large‐scale coastline evolution to compare the long‐term, non‐local effects of two generalized classes o...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2012-10, Vol.39 (19), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 39 |
creator | Ells, Kenneth Murray, A. Brad |
description | The future of large‐scale coastline evolution will be strongly coupled to human manipulations designed to prevent erosion. We explore the consequences of this coupling using a numerical model for large‐scale coastline evolution to compare the long‐term, non‐local effects of two generalized classes of shoreline stabilization: 1) beach nourishment (the addition of dredged sand to an eroding beach), and 2) hard‐structures (e.g., seawalls, groynes, etc.) which fix the position of the shoreline without adding sand. In centurial model experiments where localized stabilization is maintained in the context of changing climate forcing, both forms of stabilization are found to significantly alter patterns of erosion and accretion at distances up to tens of kilometers. On a cuspate‐cape coastline similar to the North and South Carolina coast, USA, with stabilization applied to the eroding updrift flank of a single cape, perturbations to coastline evolution are qualitatively similar within ∼20 km for each stabilization scenario, though they differ in magnitude both updrift and downdrift of the stabilized shoreline. The “human” signal in coastline change can extend as far as a neighboring cape (approximately 100 km away), but these long‐range effects differ for each scenario. Nourishment resulted in seaward growth of the stabilized cape, increasing the extent that it blocked sediment flux in downdrift regions of the coast through wave shadowing. When stabilized with a hard structure the cape's initial position remain fixed, decreasing wave shadowing.
Key Points
Human actions have become part of the large‐scale coastline‐evolution system
Local shoreline stabilization alters coastline response to storm climate change
Affects on coastline morphodynamics depend on the type of stabilization used |
doi_str_mv | 10.1029/2012GL052627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671608757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788028411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5060-5d1ccf0798279d4ffad899e729df79be4c594e61ee00686a1c8cd8467e83bd863</originalsourceid><addsrcrecordid>eNqFkdFrFDEQxoMoeFbf_AMWRPChayfZTbJ51EPPwtJCqQi-hFx2VlP3kjOzh9a_3tQtRXywTzMwv-9jZj7GnnN4zUGYEwFcbHqQQgn9gK24adu6A9AP2QrAlF5o9Zg9IboCgAYavmKnfYpf6hnz7riKKdZT8m6qfHI0TyFilZH2KRJSNadqGdLXlPHPkGa3DVP45eaQ4lP2aHQT4bPbesQ-vn93uf5Q9-eb0_WbvnYSFNRy4N6PoE1ZxgztOLqhMwa1MMOozRZbL02LiiMCqE457js_dK3S2DXboVPNEXu1-O5z-n5Amu0ukMdpchHTgSxXmivotNT3o1xI0SjRNgV98Q96lQ45lkMKxbkufuqGOl4onxNRxtHuc9i5fG052JsI7N8RFPzlramj8rkxu-gD3WmEksqAagsnFu5HmPD6v552c9ELIzUUUb2IAs34807k8jerdKOl_XS2sXz9-YJfvjVWN78BEGGhzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1111787563</pqid></control><display><type>article</type><title>Long-term, non-local coastline responses to local shoreline stabilization</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><creator>Ells, Kenneth ; Murray, A. Brad</creator><creatorcontrib>Ells, Kenneth ; Murray, A. Brad</creatorcontrib><description>The future of large‐scale coastline evolution will be strongly coupled to human manipulations designed to prevent erosion. We explore the consequences of this coupling using a numerical model for large‐scale coastline evolution to compare the long‐term, non‐local effects of two generalized classes of shoreline stabilization: 1) beach nourishment (the addition of dredged sand to an eroding beach), and 2) hard‐structures (e.g., seawalls, groynes, etc.) which fix the position of the shoreline without adding sand. In centurial model experiments where localized stabilization is maintained in the context of changing climate forcing, both forms of stabilization are found to significantly alter patterns of erosion and accretion at distances up to tens of kilometers. On a cuspate‐cape coastline similar to the North and South Carolina coast, USA, with stabilization applied to the eroding updrift flank of a single cape, perturbations to coastline evolution are qualitatively similar within ∼20 km for each stabilization scenario, though they differ in magnitude both updrift and downdrift of the stabilized shoreline. The “human” signal in coastline change can extend as far as a neighboring cape (approximately 100 km away), but these long‐range effects differ for each scenario. Nourishment resulted in seaward growth of the stabilized cape, increasing the extent that it blocked sediment flux in downdrift regions of the coast through wave shadowing. When stabilized with a hard structure the cape's initial position remain fixed, decreasing wave shadowing.
Key Points
Human actions have become part of the large‐scale coastline‐evolution system
Local shoreline stabilization alters coastline response to storm climate change
Affects on coastline morphodynamics depend on the type of stabilization used</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2012GL052627</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Accretion ; Beach erosion ; Beach nourishment ; Beaches ; Climate change ; Coastal erosion ; coastline evolution ; Coastlines ; Earth sciences ; Earth, ocean, space ; Erosion ; Erosion control ; Evolution ; Exact sciences and technology ; Geophysics ; High performance computing ; Human influences ; human-landscape coupling ; Hydrology ; landscape response to climate change ; Mathematical models ; Oceanography ; Physical oceanography ; Sand ; shoreline stabilization ; Shorelines ; Stabilization</subject><ispartof>Geophysical research letters, 2012-10, Vol.39 (19), p.n/a</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Geophysical Union 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5060-5d1ccf0798279d4ffad899e729df79be4c594e61ee00686a1c8cd8467e83bd863</citedby><cites>FETCH-LOGICAL-a5060-5d1ccf0798279d4ffad899e729df79be4c594e61ee00686a1c8cd8467e83bd863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012GL052627$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012GL052627$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26569064$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ells, Kenneth</creatorcontrib><creatorcontrib>Murray, A. Brad</creatorcontrib><title>Long-term, non-local coastline responses to local shoreline stabilization</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The future of large‐scale coastline evolution will be strongly coupled to human manipulations designed to prevent erosion. We explore the consequences of this coupling using a numerical model for large‐scale coastline evolution to compare the long‐term, non‐local effects of two generalized classes of shoreline stabilization: 1) beach nourishment (the addition of dredged sand to an eroding beach), and 2) hard‐structures (e.g., seawalls, groynes, etc.) which fix the position of the shoreline without adding sand. In centurial model experiments where localized stabilization is maintained in the context of changing climate forcing, both forms of stabilization are found to significantly alter patterns of erosion and accretion at distances up to tens of kilometers. On a cuspate‐cape coastline similar to the North and South Carolina coast, USA, with stabilization applied to the eroding updrift flank of a single cape, perturbations to coastline evolution are qualitatively similar within ∼20 km for each stabilization scenario, though they differ in magnitude both updrift and downdrift of the stabilized shoreline. The “human” signal in coastline change can extend as far as a neighboring cape (approximately 100 km away), but these long‐range effects differ for each scenario. Nourishment resulted in seaward growth of the stabilized cape, increasing the extent that it blocked sediment flux in downdrift regions of the coast through wave shadowing. When stabilized with a hard structure the cape's initial position remain fixed, decreasing wave shadowing.
Key Points
Human actions have become part of the large‐scale coastline‐evolution system
Local shoreline stabilization alters coastline response to storm climate change
Affects on coastline morphodynamics depend on the type of stabilization used</description><subject>Accretion</subject><subject>Beach erosion</subject><subject>Beach nourishment</subject><subject>Beaches</subject><subject>Climate change</subject><subject>Coastal erosion</subject><subject>coastline evolution</subject><subject>Coastlines</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Erosion</subject><subject>Erosion control</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>High performance computing</subject><subject>Human influences</subject><subject>human-landscape coupling</subject><subject>Hydrology</subject><subject>landscape response to climate change</subject><subject>Mathematical models</subject><subject>Oceanography</subject><subject>Physical oceanography</subject><subject>Sand</subject><subject>shoreline stabilization</subject><subject>Shorelines</subject><subject>Stabilization</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkdFrFDEQxoMoeFbf_AMWRPChayfZTbJ51EPPwtJCqQi-hFx2VlP3kjOzh9a_3tQtRXywTzMwv-9jZj7GnnN4zUGYEwFcbHqQQgn9gK24adu6A9AP2QrAlF5o9Zg9IboCgAYavmKnfYpf6hnz7riKKdZT8m6qfHI0TyFilZH2KRJSNadqGdLXlPHPkGa3DVP45eaQ4lP2aHQT4bPbesQ-vn93uf5Q9-eb0_WbvnYSFNRy4N6PoE1ZxgztOLqhMwa1MMOozRZbL02LiiMCqE457js_dK3S2DXboVPNEXu1-O5z-n5Amu0ukMdpchHTgSxXmivotNT3o1xI0SjRNgV98Q96lQ45lkMKxbkufuqGOl4onxNRxtHuc9i5fG052JsI7N8RFPzlramj8rkxu-gD3WmEksqAagsnFu5HmPD6v552c9ELIzUUUb2IAs34807k8jerdKOl_XS2sXz9-YJfvjVWN78BEGGhzg</recordid><startdate>20121016</startdate><enddate>20121016</enddate><creator>Ells, Kenneth</creator><creator>Murray, A. Brad</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SM</scope></search><sort><creationdate>20121016</creationdate><title>Long-term, non-local coastline responses to local shoreline stabilization</title><author>Ells, Kenneth ; Murray, A. Brad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5060-5d1ccf0798279d4ffad899e729df79be4c594e61ee00686a1c8cd8467e83bd863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accretion</topic><topic>Beach erosion</topic><topic>Beach nourishment</topic><topic>Beaches</topic><topic>Climate change</topic><topic>Coastal erosion</topic><topic>coastline evolution</topic><topic>Coastlines</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Erosion</topic><topic>Erosion control</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>High performance computing</topic><topic>Human influences</topic><topic>human-landscape coupling</topic><topic>Hydrology</topic><topic>landscape response to climate change</topic><topic>Mathematical models</topic><topic>Oceanography</topic><topic>Physical oceanography</topic><topic>Sand</topic><topic>shoreline stabilization</topic><topic>Shorelines</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ells, Kenneth</creatorcontrib><creatorcontrib>Murray, A. Brad</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ells, Kenneth</au><au>Murray, A. Brad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term, non-local coastline responses to local shoreline stabilization</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2012-10-16</date><risdate>2012</risdate><volume>39</volume><issue>19</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>The future of large‐scale coastline evolution will be strongly coupled to human manipulations designed to prevent erosion. We explore the consequences of this coupling using a numerical model for large‐scale coastline evolution to compare the long‐term, non‐local effects of two generalized classes of shoreline stabilization: 1) beach nourishment (the addition of dredged sand to an eroding beach), and 2) hard‐structures (e.g., seawalls, groynes, etc.) which fix the position of the shoreline without adding sand. In centurial model experiments where localized stabilization is maintained in the context of changing climate forcing, both forms of stabilization are found to significantly alter patterns of erosion and accretion at distances up to tens of kilometers. On a cuspate‐cape coastline similar to the North and South Carolina coast, USA, with stabilization applied to the eroding updrift flank of a single cape, perturbations to coastline evolution are qualitatively similar within ∼20 km for each stabilization scenario, though they differ in magnitude both updrift and downdrift of the stabilized shoreline. The “human” signal in coastline change can extend as far as a neighboring cape (approximately 100 km away), but these long‐range effects differ for each scenario. Nourishment resulted in seaward growth of the stabilized cape, increasing the extent that it blocked sediment flux in downdrift regions of the coast through wave shadowing. When stabilized with a hard structure the cape's initial position remain fixed, decreasing wave shadowing.
Key Points
Human actions have become part of the large‐scale coastline‐evolution system
Local shoreline stabilization alters coastline response to storm climate change
Affects on coastline morphodynamics depend on the type of stabilization used</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012GL052627</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2012-10, Vol.39 (19), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671608757 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals |
subjects | Accretion Beach erosion Beach nourishment Beaches Climate change Coastal erosion coastline evolution Coastlines Earth sciences Earth, ocean, space Erosion Erosion control Evolution Exact sciences and technology Geophysics High performance computing Human influences human-landscape coupling Hydrology landscape response to climate change Mathematical models Oceanography Physical oceanography Sand shoreline stabilization Shorelines Stabilization |
title | Long-term, non-local coastline responses to local shoreline stabilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term,%20non-local%20coastline%20responses%20to%20local%20shoreline%20stabilization&rft.jtitle=Geophysical%20research%20letters&rft.au=Ells,%20Kenneth&rft.date=2012-10-16&rft.volume=39&rft.issue=19&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2012GL052627&rft_dat=%3Cproquest_cross%3E2788028411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1111787563&rft_id=info:pmid/&rfr_iscdi=true |