Dual-primal domain decomposition method for uncertainty quantification

The spectral stochastic finite element method (SSFEM) may offer an efficient alternative to the traditional Monte Carlo simulations (MCS) for uncertainty quantification of large-scale numerical simulations. In the framework of the intrusive SSFEM, the main computational challenge involves solving a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2013-11, Vol.266, p.112-124
Hauptverfasser: Subber, Waad, Sarkar, Abhijit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue
container_start_page 112
container_title Computer methods in applied mechanics and engineering
container_volume 266
creator Subber, Waad
Sarkar, Abhijit
description The spectral stochastic finite element method (SSFEM) may offer an efficient alternative to the traditional Monte Carlo simulations (MCS) for uncertainty quantification of large-scale numerical simulations. In the framework of the intrusive SSFEM, the main computational challenge involves solving a coupled set of deterministic linear systems. For large-scale numerical models, the computational efficiency of the intrusive SSFEM primarily depends on the solution techniques employed to tackle the resulting coupled linear systems. In this paper, we report a probabilistic version of the dual-primal domain decomposition method for the intrusive SSFEM in order to exploit high performance computing platforms for uncertainty quantification. In particular, we formulate a probabilistic version of the dual-primal finite element tearing and interconnect (FETI-DP) technique to solve the large-scale linear systems in the intrusive SSFEM. In the probabilistic setting, the operator of the dual interface system in the dual-primal approach contains a coarse problem. The introduction of the coarse problem in the probabilistic setting leads to a scalable performance of the dual-primal iterative substructuring method for uncertainty quantification of large-scale computational models. The convergence properties, numerical and parallel scalabilities of the probabilistic FETI-DP method and the recently developed probabilistic version of the balancing domain decomposition by constraints (BDDC) method are contrasted. For numerical illustrations, we consider flow through porous media and linear elasticity problems with spatially varying system parameters modelled as non-Gaussian random processes. The algorithms are implemented on a Linux cluster using MPI and PETSc parallel libraries.
doi_str_mv 10.1016/j.cma.2013.07.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671606497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782513001771</els_id><sourcerecordid>1671606497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7bd9a0a260550f971c7b358e0c0be7bd325d830f8807a342f164c02f4a5670de3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gysiSc7SR2xIQKBaRKLDBbrj-EqyRubQep_x6HMnPLDfe8J70PQrcYKgy4vd9VapAVAUwrYBUAO0MLzFlXEkz5OVoA1E3JOGku0VWMO8jDMVmg9dMk-3If3CD7QvtBurHQRvlh76NLzo_FYNKX14X1oZhGZULKSDoWh0mOyVmn5Exdowsr-2hu_vYSfa6fP1av5eb95W31uCkVpZBKttWdBElaaBqwHcOKbWnDDSjYmnykpNGcguUcmKQ1sbitFRBby6ZloA1dorvT333wh8nEJAYXlel7ORo_RYFbhlto645lFJ9QFXyMwVjx2zIcBQYxOxM7kZ2J2ZkAJrKznHk4ZUzu8O1MEFE5k1trF4xKQnv3T_oH_910kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671606497</pqid></control><display><type>article</type><title>Dual-primal domain decomposition method for uncertainty quantification</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Subber, Waad ; Sarkar, Abhijit</creator><creatorcontrib>Subber, Waad ; Sarkar, Abhijit</creatorcontrib><description>The spectral stochastic finite element method (SSFEM) may offer an efficient alternative to the traditional Monte Carlo simulations (MCS) for uncertainty quantification of large-scale numerical simulations. In the framework of the intrusive SSFEM, the main computational challenge involves solving a coupled set of deterministic linear systems. For large-scale numerical models, the computational efficiency of the intrusive SSFEM primarily depends on the solution techniques employed to tackle the resulting coupled linear systems. In this paper, we report a probabilistic version of the dual-primal domain decomposition method for the intrusive SSFEM in order to exploit high performance computing platforms for uncertainty quantification. In particular, we formulate a probabilistic version of the dual-primal finite element tearing and interconnect (FETI-DP) technique to solve the large-scale linear systems in the intrusive SSFEM. In the probabilistic setting, the operator of the dual interface system in the dual-primal approach contains a coarse problem. The introduction of the coarse problem in the probabilistic setting leads to a scalable performance of the dual-primal iterative substructuring method for uncertainty quantification of large-scale computational models. The convergence properties, numerical and parallel scalabilities of the probabilistic FETI-DP method and the recently developed probabilistic version of the balancing domain decomposition by constraints (BDDC) method are contrasted. For numerical illustrations, we consider flow through porous media and linear elasticity problems with spatially varying system parameters modelled as non-Gaussian random processes. The algorithms are implemented on a Linux cluster using MPI and PETSc parallel libraries.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2013.07.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Balancing domain decomposition by constraints ; Coarsening ; Computation ; Computer simulation ; Domain decomposition method ; Dual-primal finite element tearing and interconnect method ; Linear systems ; Mathematical models ; Polynomial chaos expansion ; Probabilistic methods ; Probability theory ; Schur complement system ; Stochastic finite element method ; Uncertainty</subject><ispartof>Computer methods in applied mechanics and engineering, 2013-11, Vol.266, p.112-124</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7bd9a0a260550f971c7b358e0c0be7bd325d830f8807a342f164c02f4a5670de3</citedby><cites>FETCH-LOGICAL-c330t-7bd9a0a260550f971c7b358e0c0be7bd325d830f8807a342f164c02f4a5670de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782513001771$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Subber, Waad</creatorcontrib><creatorcontrib>Sarkar, Abhijit</creatorcontrib><title>Dual-primal domain decomposition method for uncertainty quantification</title><title>Computer methods in applied mechanics and engineering</title><description>The spectral stochastic finite element method (SSFEM) may offer an efficient alternative to the traditional Monte Carlo simulations (MCS) for uncertainty quantification of large-scale numerical simulations. In the framework of the intrusive SSFEM, the main computational challenge involves solving a coupled set of deterministic linear systems. For large-scale numerical models, the computational efficiency of the intrusive SSFEM primarily depends on the solution techniques employed to tackle the resulting coupled linear systems. In this paper, we report a probabilistic version of the dual-primal domain decomposition method for the intrusive SSFEM in order to exploit high performance computing platforms for uncertainty quantification. In particular, we formulate a probabilistic version of the dual-primal finite element tearing and interconnect (FETI-DP) technique to solve the large-scale linear systems in the intrusive SSFEM. In the probabilistic setting, the operator of the dual interface system in the dual-primal approach contains a coarse problem. The introduction of the coarse problem in the probabilistic setting leads to a scalable performance of the dual-primal iterative substructuring method for uncertainty quantification of large-scale computational models. The convergence properties, numerical and parallel scalabilities of the probabilistic FETI-DP method and the recently developed probabilistic version of the balancing domain decomposition by constraints (BDDC) method are contrasted. For numerical illustrations, we consider flow through porous media and linear elasticity problems with spatially varying system parameters modelled as non-Gaussian random processes. The algorithms are implemented on a Linux cluster using MPI and PETSc parallel libraries.</description><subject>Balancing domain decomposition by constraints</subject><subject>Coarsening</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Domain decomposition method</subject><subject>Dual-primal finite element tearing and interconnect method</subject><subject>Linear systems</subject><subject>Mathematical models</subject><subject>Polynomial chaos expansion</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Schur complement system</subject><subject>Stochastic finite element method</subject><subject>Uncertainty</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gysiSc7SR2xIQKBaRKLDBbrj-EqyRubQep_x6HMnPLDfe8J70PQrcYKgy4vd9VapAVAUwrYBUAO0MLzFlXEkz5OVoA1E3JOGku0VWMO8jDMVmg9dMk-3If3CD7QvtBurHQRvlh76NLzo_FYNKX14X1oZhGZULKSDoWh0mOyVmn5Exdowsr-2hu_vYSfa6fP1av5eb95W31uCkVpZBKttWdBElaaBqwHcOKbWnDDSjYmnykpNGcguUcmKQ1sbitFRBby6ZloA1dorvT333wh8nEJAYXlel7ORo_RYFbhlto645lFJ9QFXyMwVjx2zIcBQYxOxM7kZ2J2ZkAJrKznHk4ZUzu8O1MEFE5k1trF4xKQnv3T_oH_910kA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Subber, Waad</creator><creator>Sarkar, Abhijit</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>Dual-primal domain decomposition method for uncertainty quantification</title><author>Subber, Waad ; Sarkar, Abhijit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7bd9a0a260550f971c7b358e0c0be7bd325d830f8807a342f164c02f4a5670de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Balancing domain decomposition by constraints</topic><topic>Coarsening</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Domain decomposition method</topic><topic>Dual-primal finite element tearing and interconnect method</topic><topic>Linear systems</topic><topic>Mathematical models</topic><topic>Polynomial chaos expansion</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Schur complement system</topic><topic>Stochastic finite element method</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subber, Waad</creatorcontrib><creatorcontrib>Sarkar, Abhijit</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subber, Waad</au><au>Sarkar, Abhijit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-primal domain decomposition method for uncertainty quantification</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>266</volume><spage>112</spage><epage>124</epage><pages>112-124</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>The spectral stochastic finite element method (SSFEM) may offer an efficient alternative to the traditional Monte Carlo simulations (MCS) for uncertainty quantification of large-scale numerical simulations. In the framework of the intrusive SSFEM, the main computational challenge involves solving a coupled set of deterministic linear systems. For large-scale numerical models, the computational efficiency of the intrusive SSFEM primarily depends on the solution techniques employed to tackle the resulting coupled linear systems. In this paper, we report a probabilistic version of the dual-primal domain decomposition method for the intrusive SSFEM in order to exploit high performance computing platforms for uncertainty quantification. In particular, we formulate a probabilistic version of the dual-primal finite element tearing and interconnect (FETI-DP) technique to solve the large-scale linear systems in the intrusive SSFEM. In the probabilistic setting, the operator of the dual interface system in the dual-primal approach contains a coarse problem. The introduction of the coarse problem in the probabilistic setting leads to a scalable performance of the dual-primal iterative substructuring method for uncertainty quantification of large-scale computational models. The convergence properties, numerical and parallel scalabilities of the probabilistic FETI-DP method and the recently developed probabilistic version of the balancing domain decomposition by constraints (BDDC) method are contrasted. For numerical illustrations, we consider flow through porous media and linear elasticity problems with spatially varying system parameters modelled as non-Gaussian random processes. The algorithms are implemented on a Linux cluster using MPI and PETSc parallel libraries.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2013.07.007</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2013-11, Vol.266, p.112-124
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_1671606497
source Elsevier ScienceDirect Journals Complete
subjects Balancing domain decomposition by constraints
Coarsening
Computation
Computer simulation
Domain decomposition method
Dual-primal finite element tearing and interconnect method
Linear systems
Mathematical models
Polynomial chaos expansion
Probabilistic methods
Probability theory
Schur complement system
Stochastic finite element method
Uncertainty
title Dual-primal domain decomposition method for uncertainty quantification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-primal%20domain%20decomposition%20method%20for%20uncertainty%20quantification&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Subber,%20Waad&rft.date=2013-11-01&rft.volume=266&rft.spage=112&rft.epage=124&rft.pages=112-124&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2013.07.007&rft_dat=%3Cproquest_cross%3E1671606497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671606497&rft_id=info:pmid/&rft_els_id=S0045782513001771&rfr_iscdi=true