Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies

To test and validate the Automated force field Topology Builder and Repository (ATB; http://compbio.biosci.uq.edu.au/atb/ ) the hydration free enthalpies for a set of 214 drug-like molecules, including 47 molecules that form part of the SAMPL4 challenge have been estimated using thermodynamic integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer-aided molecular design 2014-03, Vol.28 (3), p.221-233
Hauptverfasser: Koziara, Katarzyna B., Stroet, Martin, Malde, Alpeshkumar K., Mark, Alan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 3
container_start_page 221
container_title Journal of computer-aided molecular design
container_volume 28
creator Koziara, Katarzyna B.
Stroet, Martin
Malde, Alpeshkumar K.
Mark, Alan E.
description To test and validate the Automated force field Topology Builder and Repository (ATB; http://compbio.biosci.uq.edu.au/atb/ ) the hydration free enthalpies for a set of 214 drug-like molecules, including 47 molecules that form part of the SAMPL4 challenge have been estimated using thermodynamic integration and compared to experiment. The calculations were performed using a fully automated protocol that incorporated a dynamic analysis of the convergence and integration error in the selection of intermediate points. The system has been designed and implemented such that hydration free enthalpies can be obtained without manual intervention following the submission of a molecule to the ATB. The overall average unsigned error (AUE) using ATB 2.0 topologies for the complete set of 214 molecules was 6.7 kJ/mol and for molecules within the SAMPL4 7.5 kJ/mol. The root mean square error (RMSE) was 9.5 and 10.0 kJ/mol respectively. However, for molecules containing functional groups that form part of the main GROMOS force field the AUE was 3.4 kJ/mol and the RMSE was 4.0 kJ/mol. This suggests it will be possible to further refine the parameters provided by the ATB based on hydration free enthalpies.
doi_str_mv 10.1007/s10822-014-9713-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671605233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671605233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-b069ba95e0dd868b156d28b244a68f62ead7a66e2913299e0a87ff4303055dc43</originalsourceid><addsrcrecordid>eNqFkc1q3DAURkVpaSbTPkA3RdBNsnByJVmS1d0k9A8C3UygOyFb1zMOHsuV7MC8fTU4KaVQutJC5_ukew8h7xhcMQB9nRhUnBfAysJoJgr9gqyY1KIojWQvyQoMh0LJ8scZOU_pAXLGKHhNznhZaq2NWZG0xTR1w466wdNH13feTV0YaGjptEe6madwcBN6ug1j6MPuSG_mrvcY6cVme3NJHzGmE8-v4CMdI_quec7vjz4uZW1EpDhMe9ePHaY35FXr-oRvn841uf_8aXv7tbj7_uXb7eauaEqQU1GDMrUzEsH7SlU1k8rzqs5_d6pqFUfntVMKuWGCG4PgKt22pQABUvqmFGtysfSOMfyc85z20KUG-94NGOZkmdJMgeRC_B-VHBhjPG95TT78hT6EOQ55kEwxU1YGhMoUW6gmhpQitnaM3cHFo2VgT_LsIs9mefYkz-qcef_UPNcH9L8Tz7YywBcg5athh_GPp__Z-gvzQaLq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1519489036</pqid></control><display><type>article</type><title>Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Koziara, Katarzyna B. ; Stroet, Martin ; Malde, Alpeshkumar K. ; Mark, Alan E.</creator><creatorcontrib>Koziara, Katarzyna B. ; Stroet, Martin ; Malde, Alpeshkumar K. ; Mark, Alan E.</creatorcontrib><description>To test and validate the Automated force field Topology Builder and Repository (ATB; http://compbio.biosci.uq.edu.au/atb/ ) the hydration free enthalpies for a set of 214 drug-like molecules, including 47 molecules that form part of the SAMPL4 challenge have been estimated using thermodynamic integration and compared to experiment. The calculations were performed using a fully automated protocol that incorporated a dynamic analysis of the convergence and integration error in the selection of intermediate points. The system has been designed and implemented such that hydration free enthalpies can be obtained without manual intervention following the submission of a molecule to the ATB. The overall average unsigned error (AUE) using ATB 2.0 topologies for the complete set of 214 molecules was 6.7 kJ/mol and for molecules within the SAMPL4 7.5 kJ/mol. The root mean square error (RMSE) was 9.5 and 10.0 kJ/mol respectively. However, for molecules containing functional groups that form part of the main GROMOS force field the AUE was 3.4 kJ/mol and the RMSE was 4.0 kJ/mol. This suggests it will be possible to further refine the parameters provided by the ATB based on hydration free enthalpies.</description><identifier>ISSN: 0920-654X</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1007/s10822-014-9713-7</identifier><identifier>PMID: 24477799</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Animal Anatomy ; Automated ; Chemical compounds ; Chemistry ; Chemistry and Materials Science ; Computer Applications in Chemistry ; Computer Simulation ; Construction ; Dissolution ; Dynamical systems ; Dynamics ; Enthalpy ; Errors ; Histology ; Hydration ; Models, Chemical ; Molecular structure ; Morphology ; Pharmaceutical Preparations - chemistry ; Physical Chemistry ; Solvents ; Thermodynamics ; Topology ; Water - chemistry</subject><ispartof>Journal of computer-aided molecular design, 2014-03, Vol.28 (3), p.221-233</ispartof><rights>Springer International Publishing Switzerland 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-b069ba95e0dd868b156d28b244a68f62ead7a66e2913299e0a87ff4303055dc43</citedby><cites>FETCH-LOGICAL-c405t-b069ba95e0dd868b156d28b244a68f62ead7a66e2913299e0a87ff4303055dc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10822-014-9713-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10822-014-9713-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24477799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koziara, Katarzyna B.</creatorcontrib><creatorcontrib>Stroet, Martin</creatorcontrib><creatorcontrib>Malde, Alpeshkumar K.</creatorcontrib><creatorcontrib>Mark, Alan E.</creatorcontrib><title>Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><addtitle>J Comput Aided Mol Des</addtitle><description>To test and validate the Automated force field Topology Builder and Repository (ATB; http://compbio.biosci.uq.edu.au/atb/ ) the hydration free enthalpies for a set of 214 drug-like molecules, including 47 molecules that form part of the SAMPL4 challenge have been estimated using thermodynamic integration and compared to experiment. The calculations were performed using a fully automated protocol that incorporated a dynamic analysis of the convergence and integration error in the selection of intermediate points. The system has been designed and implemented such that hydration free enthalpies can be obtained without manual intervention following the submission of a molecule to the ATB. The overall average unsigned error (AUE) using ATB 2.0 topologies for the complete set of 214 molecules was 6.7 kJ/mol and for molecules within the SAMPL4 7.5 kJ/mol. The root mean square error (RMSE) was 9.5 and 10.0 kJ/mol respectively. However, for molecules containing functional groups that form part of the main GROMOS force field the AUE was 3.4 kJ/mol and the RMSE was 4.0 kJ/mol. This suggests it will be possible to further refine the parameters provided by the ATB based on hydration free enthalpies.</description><subject>Algorithms</subject><subject>Animal Anatomy</subject><subject>Automated</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Applications in Chemistry</subject><subject>Computer Simulation</subject><subject>Construction</subject><subject>Dissolution</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Enthalpy</subject><subject>Errors</subject><subject>Histology</subject><subject>Hydration</subject><subject>Models, Chemical</subject><subject>Molecular structure</subject><subject>Morphology</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Physical Chemistry</subject><subject>Solvents</subject><subject>Thermodynamics</subject><subject>Topology</subject><subject>Water - chemistry</subject><issn>0920-654X</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1q3DAURkVpaSbTPkA3RdBNsnByJVmS1d0k9A8C3UygOyFb1zMOHsuV7MC8fTU4KaVQutJC5_ukew8h7xhcMQB9nRhUnBfAysJoJgr9gqyY1KIojWQvyQoMh0LJ8scZOU_pAXLGKHhNznhZaq2NWZG0xTR1w466wdNH13feTV0YaGjptEe6madwcBN6ug1j6MPuSG_mrvcY6cVme3NJHzGmE8-v4CMdI_quec7vjz4uZW1EpDhMe9ePHaY35FXr-oRvn841uf_8aXv7tbj7_uXb7eauaEqQU1GDMrUzEsH7SlU1k8rzqs5_d6pqFUfntVMKuWGCG4PgKt22pQABUvqmFGtysfSOMfyc85z20KUG-94NGOZkmdJMgeRC_B-VHBhjPG95TT78hT6EOQ55kEwxU1YGhMoUW6gmhpQitnaM3cHFo2VgT_LsIs9mefYkz-qcef_UPNcH9L8Tz7YywBcg5athh_GPp__Z-gvzQaLq</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Koziara, Katarzyna B.</creator><creator>Stroet, Martin</creator><creator>Malde, Alpeshkumar K.</creator><creator>Mark, Alan E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope></search><sort><creationdate>20140301</creationdate><title>Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies</title><author>Koziara, Katarzyna B. ; Stroet, Martin ; Malde, Alpeshkumar K. ; Mark, Alan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-b069ba95e0dd868b156d28b244a68f62ead7a66e2913299e0a87ff4303055dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animal Anatomy</topic><topic>Automated</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Applications in Chemistry</topic><topic>Computer Simulation</topic><topic>Construction</topic><topic>Dissolution</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Enthalpy</topic><topic>Errors</topic><topic>Histology</topic><topic>Hydration</topic><topic>Models, Chemical</topic><topic>Molecular structure</topic><topic>Morphology</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Physical Chemistry</topic><topic>Solvents</topic><topic>Thermodynamics</topic><topic>Topology</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koziara, Katarzyna B.</creatorcontrib><creatorcontrib>Stroet, Martin</creatorcontrib><creatorcontrib>Malde, Alpeshkumar K.</creatorcontrib><creatorcontrib>Mark, Alan E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koziara, Katarzyna B.</au><au>Stroet, Martin</au><au>Malde, Alpeshkumar K.</au><au>Mark, Alan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies</atitle><jtitle>Journal of computer-aided molecular design</jtitle><stitle>J Comput Aided Mol Des</stitle><addtitle>J Comput Aided Mol Des</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>28</volume><issue>3</issue><spage>221</spage><epage>233</epage><pages>221-233</pages><issn>0920-654X</issn><eissn>1573-4951</eissn><abstract>To test and validate the Automated force field Topology Builder and Repository (ATB; http://compbio.biosci.uq.edu.au/atb/ ) the hydration free enthalpies for a set of 214 drug-like molecules, including 47 molecules that form part of the SAMPL4 challenge have been estimated using thermodynamic integration and compared to experiment. The calculations were performed using a fully automated protocol that incorporated a dynamic analysis of the convergence and integration error in the selection of intermediate points. The system has been designed and implemented such that hydration free enthalpies can be obtained without manual intervention following the submission of a molecule to the ATB. The overall average unsigned error (AUE) using ATB 2.0 topologies for the complete set of 214 molecules was 6.7 kJ/mol and for molecules within the SAMPL4 7.5 kJ/mol. The root mean square error (RMSE) was 9.5 and 10.0 kJ/mol respectively. However, for molecules containing functional groups that form part of the main GROMOS force field the AUE was 3.4 kJ/mol and the RMSE was 4.0 kJ/mol. This suggests it will be possible to further refine the parameters provided by the ATB based on hydration free enthalpies.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>24477799</pmid><doi>10.1007/s10822-014-9713-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-654X
ispartof Journal of computer-aided molecular design, 2014-03, Vol.28 (3), p.221-233
issn 0920-654X
1573-4951
language eng
recordid cdi_proquest_miscellaneous_1671605233
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Animal Anatomy
Automated
Chemical compounds
Chemistry
Chemistry and Materials Science
Computer Applications in Chemistry
Computer Simulation
Construction
Dissolution
Dynamical systems
Dynamics
Enthalpy
Errors
Histology
Hydration
Models, Chemical
Molecular structure
Morphology
Pharmaceutical Preparations - chemistry
Physical Chemistry
Solvents
Thermodynamics
Topology
Water - chemistry
title Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20and%20validation%20of%20the%20Automated%20Topology%20Builder%20(ATB)%20version%202.0:%20prediction%20of%20hydration%20free%20enthalpies&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Koziara,%20Katarzyna%20B.&rft.date=2014-03-01&rft.volume=28&rft.issue=3&rft.spage=221&rft.epage=233&rft.pages=221-233&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1007/s10822-014-9713-7&rft_dat=%3Cproquest_cross%3E1671605233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1519489036&rft_id=info:pmid/24477799&rfr_iscdi=true