A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms

In order to enable simulations of developing wind turbine array boundary layers with highly realistic inflow conditions a concurrent precursor method for Large Eddy Simulations is proposed. In this method we consider two domains simultaneously, i.e. in one domain a turbulent Atmospheric Boundary Lay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2014-08, Vol.68, p.46-50
Hauptverfasser: Stevens, Richard J.A.M., Graham, Jason, Meneveau, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 46
container_title Renewable energy
container_volume 68
creator Stevens, Richard J.A.M.
Graham, Jason
Meneveau, Charles
description In order to enable simulations of developing wind turbine array boundary layers with highly realistic inflow conditions a concurrent precursor method for Large Eddy Simulations is proposed. In this method we consider two domains simultaneously, i.e. in one domain a turbulent Atmospheric Boundary Layer (ABL) without wind turbines is simulated in order to generate the turbulent inflow conditions for a second domain in which the wind turbines are placed. The benefit of this approach is that a) it avoids the need for large databases in which the turbulent inflow conditions are stored and the correspondingly slow I/O operations and b) we are sure that the simulations are not negatively affected by statically swept fixed inflow fields or synthetic fields lacking the proper ABL coherent structures. Sample applications are presented, in which, in agreement with field data a strong decrease of the power output of downstream wind-turbines with respect to the first row of wind-turbines is observed for perfectly aligned inflow. •We use Large Eddy Simulations to model finite length wind-farms.•The inflow conditions are obtained using a novel concurrent precursor method.•The time-evolving streaky structures of the atmospheric boundary layer are captured.•This method prevents the usage of large databases to store inflow conditions.•This limits I/O operations, which is beneficial from a computational point of view.
doi_str_mv 10.1016/j.renene.2014.01.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671603133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148114000536</els_id><sourcerecordid>1671603133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-5d3cc935274f49bbed649dbcc2795c140561eb5edf71ba569470fe110c076d653</originalsourceid><addsrcrecordid>eNqFkU2LFDEQQIMoOK7-Aw-5CF66N9VJp7svwrKsujDgQT2HdFLZzdCdtEnGZf-9GWbwqORQoXj1QT1C3gNrgYG8PrQJQ31tx0C0DFrWiRdkB-MwNUyO3UuyY5NkDYgRXpM3OR8Yg34cxI4sN9TEYI6pdih0S1i_OSbqg1viE12xPEZLXc3sdXpAemftM_3u1-Oii48hUx0s1du2eHNJlEidD74gXTA8lEf65CvidFrzW_LK6SXju0u8Ij8_3_24_drsv325v73ZN0aIsTS95cZMvO8G4cQ0z2ilmOxsTDdMvQHBegk492jdALPu5SQG5hCAGTZIK3t-RT6e-24p_jpiLmr12eCy6IDxmBXIASTjwPn_0Z6LsW7Cx4qKM2pSzDmhU1vyq07PCpg6eVAHdfagTh4UA1U91LIPlwk6G724pIPx-W9tN4qOw3DiPp05rJf57TGpbDwGg9ZXK0XZ6P896A9EO6DM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534852738</pqid></control><display><type>article</type><title>A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms</title><source>Elsevier ScienceDirect Journals</source><creator>Stevens, Richard J.A.M. ; Graham, Jason ; Meneveau, Charles</creator><creatorcontrib>Stevens, Richard J.A.M. ; Graham, Jason ; Meneveau, Charles</creatorcontrib><description>In order to enable simulations of developing wind turbine array boundary layers with highly realistic inflow conditions a concurrent precursor method for Large Eddy Simulations is proposed. In this method we consider two domains simultaneously, i.e. in one domain a turbulent Atmospheric Boundary Layer (ABL) without wind turbines is simulated in order to generate the turbulent inflow conditions for a second domain in which the wind turbines are placed. The benefit of this approach is that a) it avoids the need for large databases in which the turbulent inflow conditions are stored and the correspondingly slow I/O operations and b) we are sure that the simulations are not negatively affected by statically swept fixed inflow fields or synthetic fields lacking the proper ABL coherent structures. Sample applications are presented, in which, in agreement with field data a strong decrease of the power output of downstream wind-turbines with respect to the first row of wind-turbines is observed for perfectly aligned inflow. •We use Large Eddy Simulations to model finite length wind-farms.•The inflow conditions are obtained using a novel concurrent precursor method.•The time-evolving streaky structures of the atmospheric boundary layer are captured.•This method prevents the usage of large databases to store inflow conditions.•This limits I/O operations, which is beneficial from a computational point of view.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2014.01.024</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Arrays ; Energy ; Exact sciences and technology ; Fluid dynamics ; Inflow ; Inflow conditions ; Large Eddy Simulation ; Natural energy ; Precursor simulation ; Precursors ; Simulation ; Turbulence ; Wind turbines ; Wind-farm simulations</subject><ispartof>Renewable energy, 2014-08, Vol.68, p.46-50</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-5d3cc935274f49bbed649dbcc2795c140561eb5edf71ba569470fe110c076d653</citedby><cites>FETCH-LOGICAL-c448t-5d3cc935274f49bbed649dbcc2795c140561eb5edf71ba569470fe110c076d653</cites><orcidid>0000-0001-6976-5704 ; 0000-0003-1837-6279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2014.01.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28423174$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevens, Richard J.A.M.</creatorcontrib><creatorcontrib>Graham, Jason</creatorcontrib><creatorcontrib>Meneveau, Charles</creatorcontrib><title>A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms</title><title>Renewable energy</title><description>In order to enable simulations of developing wind turbine array boundary layers with highly realistic inflow conditions a concurrent precursor method for Large Eddy Simulations is proposed. In this method we consider two domains simultaneously, i.e. in one domain a turbulent Atmospheric Boundary Layer (ABL) without wind turbines is simulated in order to generate the turbulent inflow conditions for a second domain in which the wind turbines are placed. The benefit of this approach is that a) it avoids the need for large databases in which the turbulent inflow conditions are stored and the correspondingly slow I/O operations and b) we are sure that the simulations are not negatively affected by statically swept fixed inflow fields or synthetic fields lacking the proper ABL coherent structures. Sample applications are presented, in which, in agreement with field data a strong decrease of the power output of downstream wind-turbines with respect to the first row of wind-turbines is observed for perfectly aligned inflow. •We use Large Eddy Simulations to model finite length wind-farms.•The inflow conditions are obtained using a novel concurrent precursor method.•The time-evolving streaky structures of the atmospheric boundary layer are captured.•This method prevents the usage of large databases to store inflow conditions.•This limits I/O operations, which is beneficial from a computational point of view.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Inflow</subject><subject>Inflow conditions</subject><subject>Large Eddy Simulation</subject><subject>Natural energy</subject><subject>Precursor simulation</subject><subject>Precursors</subject><subject>Simulation</subject><subject>Turbulence</subject><subject>Wind turbines</subject><subject>Wind-farm simulations</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQQIMoOK7-Aw-5CF66N9VJp7svwrKsujDgQT2HdFLZzdCdtEnGZf-9GWbwqORQoXj1QT1C3gNrgYG8PrQJQ31tx0C0DFrWiRdkB-MwNUyO3UuyY5NkDYgRXpM3OR8Yg34cxI4sN9TEYI6pdih0S1i_OSbqg1viE12xPEZLXc3sdXpAemftM_3u1-Oii48hUx0s1du2eHNJlEidD74gXTA8lEf65CvidFrzW_LK6SXju0u8Ij8_3_24_drsv325v73ZN0aIsTS95cZMvO8G4cQ0z2ilmOxsTDdMvQHBegk492jdALPu5SQG5hCAGTZIK3t-RT6e-24p_jpiLmr12eCy6IDxmBXIASTjwPn_0Z6LsW7Cx4qKM2pSzDmhU1vyq07PCpg6eVAHdfagTh4UA1U91LIPlwk6G724pIPx-W9tN4qOw3DiPp05rJf57TGpbDwGg9ZXK0XZ6P896A9EO6DM</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Stevens, Richard J.A.M.</creator><creator>Graham, Jason</creator><creator>Meneveau, Charles</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6976-5704</orcidid><orcidid>https://orcid.org/0000-0003-1837-6279</orcidid></search><sort><creationdate>20140801</creationdate><title>A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms</title><author>Stevens, Richard J.A.M. ; Graham, Jason ; Meneveau, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-5d3cc935274f49bbed649dbcc2795c140561eb5edf71ba569470fe110c076d653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Inflow</topic><topic>Inflow conditions</topic><topic>Large Eddy Simulation</topic><topic>Natural energy</topic><topic>Precursor simulation</topic><topic>Precursors</topic><topic>Simulation</topic><topic>Turbulence</topic><topic>Wind turbines</topic><topic>Wind-farm simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevens, Richard J.A.M.</creatorcontrib><creatorcontrib>Graham, Jason</creatorcontrib><creatorcontrib>Meneveau, Charles</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevens, Richard J.A.M.</au><au>Graham, Jason</au><au>Meneveau, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms</atitle><jtitle>Renewable energy</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>68</volume><spage>46</spage><epage>50</epage><pages>46-50</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>In order to enable simulations of developing wind turbine array boundary layers with highly realistic inflow conditions a concurrent precursor method for Large Eddy Simulations is proposed. In this method we consider two domains simultaneously, i.e. in one domain a turbulent Atmospheric Boundary Layer (ABL) without wind turbines is simulated in order to generate the turbulent inflow conditions for a second domain in which the wind turbines are placed. The benefit of this approach is that a) it avoids the need for large databases in which the turbulent inflow conditions are stored and the correspondingly slow I/O operations and b) we are sure that the simulations are not negatively affected by statically swept fixed inflow fields or synthetic fields lacking the proper ABL coherent structures. Sample applications are presented, in which, in agreement with field data a strong decrease of the power output of downstream wind-turbines with respect to the first row of wind-turbines is observed for perfectly aligned inflow. •We use Large Eddy Simulations to model finite length wind-farms.•The inflow conditions are obtained using a novel concurrent precursor method.•The time-evolving streaky structures of the atmospheric boundary layer are captured.•This method prevents the usage of large databases to store inflow conditions.•This limits I/O operations, which is beneficial from a computational point of view.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2014.01.024</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6976-5704</orcidid><orcidid>https://orcid.org/0000-0003-1837-6279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2014-08, Vol.68, p.46-50
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_1671603133
source Elsevier ScienceDirect Journals
subjects Applied sciences
Arrays
Energy
Exact sciences and technology
Fluid dynamics
Inflow
Inflow conditions
Large Eddy Simulation
Natural energy
Precursor simulation
Precursors
Simulation
Turbulence
Wind turbines
Wind-farm simulations
title A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20concurrent%20precursor%20inflow%20method%20for%20Large%20Eddy%20Simulations%20and%20applications%20to%20finite%20length%20wind%20farms&rft.jtitle=Renewable%20energy&rft.au=Stevens,%20Richard%20J.A.M.&rft.date=2014-08-01&rft.volume=68&rft.spage=46&rft.epage=50&rft.pages=46-50&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2014.01.024&rft_dat=%3Cproquest_cross%3E1671603133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534852738&rft_id=info:pmid/&rft_els_id=S0960148114000536&rfr_iscdi=true