Preparation and drug delivery study of electrospun hollow PES ultrafine fibers with a multilayer wall

The focus of this work was the preparation of hollow ultrafine fibers with a multilayer wall via coaxial electrospinning technology in one step and then studied their drug delivery properties. In this paper, by choosing a suitable dilute hydrophilic polymer solution as the core solution, polyethersu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloid and polymer science 2014-06, Vol.292 (6), p.1339-1345
Hauptverfasser: Wei, Zhimei, Zhang, Quanchao, Peng, Minle, Wang, Xiaojun, long, Shengru, Yang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The focus of this work was the preparation of hollow ultrafine fibers with a multilayer wall via coaxial electrospinning technology in one step and then studied their drug delivery properties. In this paper, by choosing a suitable dilute hydrophilic polymer solution as the core solution, polyethersulfone (PES) hollow ultrafine fibers with two different layers wall (porous structure layer and dense smooth layer) were formed during coaxial electrospinning process in one step. They showed good drug delivery capacity when curcumin was used as the model drug. There were much larger delivery amounts, more stable release rate, and higher utilization rate of PES hollow ultrafine fibers with a multilayer wall to curcumin than that of PES porous ultrafine fibers. Compared with porous ultrafine fibers, hollow ultrafine fibers with two different layers wall were more suitable to be used as drug delivery materials. Besides, between the two hollow ultrafine fibers with two different layers wall mentioned in this paper, there was much better drug delivery capacity for the hollow fibers produced with the core solution of PVA/DMSO. These results showed that PES hollow ultrafine fibers with two different layers wall have the potential to be used as the drug delivery materials.
ISSN:0303-402X
1435-1536
DOI:10.1007/s00396-014-3187-y