Transient modeling of high-inertial thermal bridges in buildings using the equivalent thermal wall method

The method of the equivalent thermal wall has been employed for modeling the transient response of high-inertial thermal bridges. A new strategy is presented in order to adjust the thermal properties of the equivalent three-layered wall, which takes into account the temperature distribution across t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2014-06, Vol.67 (1-2), p.370-377
Hauptverfasser: Aguilar, F., Solano, J.P., Vicente, P.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 1-2
container_start_page 370
container_title Applied thermal engineering
container_volume 67
creator Aguilar, F.
Solano, J.P.
Vicente, P.G.
description The method of the equivalent thermal wall has been employed for modeling the transient response of high-inertial thermal bridges. A new strategy is presented in order to adjust the thermal properties of the equivalent three-layered wall, which takes into account the temperature distribution across the thermal bridge in a steady-state heat conduction scenario. Two different thermal bridge topologies created by the junction of a vertical wall and an intermediate or a ground floor slab are analyzed with this method, and its feasibility for the implementation in building energy simulation tools is discussed: if the thermal bridge is not considered, an underestimation of 25% in the heat flux across the bridge is predicted. If the thermal bridge is modeled but its thermal inertia is neglected, a time-delayed heat flux response is retrieved. Conversely, the simulation based on the equivalent wall method provides a response nearly identical to the actual dynamic performance of the thermal bridge. [Display omitted] •Two highly-inertial thermal bridges are analyzed using the equivalent thermal wall method.•We present a method for obtaining the thermal properties of the equivalent walls.•A strategy for the decomposition of the thermal bridges into several walls is devised.•The transient performance of the equivalent thermal walls is compared with classical models.•A reliable analysis of the transient thermal performance through thermal bridges is demonstrated.
doi_str_mv 10.1016/j.applthermaleng.2014.03.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671598665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431114002373</els_id><sourcerecordid>1671598665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ca354f94d960b6f2fe7b459b1e79ff09ebd480f098553393fde217e6759a035a3</originalsourceid><addsrcrecordid>eNqNkEFLwzAYhntQcE7_Qw4KXlqTpmkb8CLDqTDwMs8hTb50GWm7Je3Ef2_GhuDNU77D874veZLkjuCMYFI-bjO527lxA76TDvo2yzEpMkwzzOqLZEYo42lBCblKrkPYYkzyuipmiV172QcL_Yi6QYOzfYsGgza23aS2Bz9a6dC5FTXe6hYCsj1qJut0hAOawjETEQT7yR6O4-Nv4ks6hzoYN4O-SS6NdAFuz-88-Vy-rBdv6erj9X3xvEoV5XRMlaSsMLzQvMRNaXIDVVMw3hCouDGYQ6OLGsejZozGhNGQkwrKinGJKZN0njycend-2E8QRtHZoMA52cMwBUHKijBelyWL6NMJVX4IwYMRO2876b8FweJoVWzFX6viaFVgKqLVGL8_L8mgpDPRpLLhtyOvWUEIqSK3PHEQv32w4EVQ0bgCbT2oUejB_m_wB13vmpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671598665</pqid></control><display><type>article</type><title>Transient modeling of high-inertial thermal bridges in buildings using the equivalent thermal wall method</title><source>Elsevier ScienceDirect Journals</source><creator>Aguilar, F. ; Solano, J.P. ; Vicente, P.G.</creator><creatorcontrib>Aguilar, F. ; Solano, J.P. ; Vicente, P.G.</creatorcontrib><description>The method of the equivalent thermal wall has been employed for modeling the transient response of high-inertial thermal bridges. A new strategy is presented in order to adjust the thermal properties of the equivalent three-layered wall, which takes into account the temperature distribution across the thermal bridge in a steady-state heat conduction scenario. Two different thermal bridge topologies created by the junction of a vertical wall and an intermediate or a ground floor slab are analyzed with this method, and its feasibility for the implementation in building energy simulation tools is discussed: if the thermal bridge is not considered, an underestimation of 25% in the heat flux across the bridge is predicted. If the thermal bridge is modeled but its thermal inertia is neglected, a time-delayed heat flux response is retrieved. Conversely, the simulation based on the equivalent wall method provides a response nearly identical to the actual dynamic performance of the thermal bridge. [Display omitted] •Two highly-inertial thermal bridges are analyzed using the equivalent thermal wall method.•We present a method for obtaining the thermal properties of the equivalent walls.•A strategy for the decomposition of the thermal bridges into several walls is devised.•The transient performance of the equivalent thermal walls is compared with classical models.•A reliable analysis of the transient thermal performance through thermal bridges is demonstrated.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2014.03.058</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Energy ; Energy. Thermal use of fuels ; Equivalence ; Equivalent thermal wall ; Exact sciences and technology ; Heat flux ; Heat transfer ; High thermal inertia ; Mathematical models ; Numerical heat conduction ; Theoretical studies. Data and constants. Metering ; Thermal bridge ; Thermal bridges ; Thermal engineering ; Walls</subject><ispartof>Applied thermal engineering, 2014-06, Vol.67 (1-2), p.370-377</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ca354f94d960b6f2fe7b459b1e79ff09ebd480f098553393fde217e6759a035a3</citedby><cites>FETCH-LOGICAL-c393t-ca354f94d960b6f2fe7b459b1e79ff09ebd480f098553393fde217e6759a035a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431114002373$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28541117$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguilar, F.</creatorcontrib><creatorcontrib>Solano, J.P.</creatorcontrib><creatorcontrib>Vicente, P.G.</creatorcontrib><title>Transient modeling of high-inertial thermal bridges in buildings using the equivalent thermal wall method</title><title>Applied thermal engineering</title><description>The method of the equivalent thermal wall has been employed for modeling the transient response of high-inertial thermal bridges. A new strategy is presented in order to adjust the thermal properties of the equivalent three-layered wall, which takes into account the temperature distribution across the thermal bridge in a steady-state heat conduction scenario. Two different thermal bridge topologies created by the junction of a vertical wall and an intermediate or a ground floor slab are analyzed with this method, and its feasibility for the implementation in building energy simulation tools is discussed: if the thermal bridge is not considered, an underestimation of 25% in the heat flux across the bridge is predicted. If the thermal bridge is modeled but its thermal inertia is neglected, a time-delayed heat flux response is retrieved. Conversely, the simulation based on the equivalent wall method provides a response nearly identical to the actual dynamic performance of the thermal bridge. [Display omitted] •Two highly-inertial thermal bridges are analyzed using the equivalent thermal wall method.•We present a method for obtaining the thermal properties of the equivalent walls.•A strategy for the decomposition of the thermal bridges into several walls is devised.•The transient performance of the equivalent thermal walls is compared with classical models.•A reliable analysis of the transient thermal performance through thermal bridges is demonstrated.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equivalence</subject><subject>Equivalent thermal wall</subject><subject>Exact sciences and technology</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High thermal inertia</subject><subject>Mathematical models</subject><subject>Numerical heat conduction</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal bridge</subject><subject>Thermal bridges</subject><subject>Thermal engineering</subject><subject>Walls</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLwzAYhntQcE7_Qw4KXlqTpmkb8CLDqTDwMs8hTb50GWm7Je3Ef2_GhuDNU77D874veZLkjuCMYFI-bjO527lxA76TDvo2yzEpMkwzzOqLZEYo42lBCblKrkPYYkzyuipmiV172QcL_Yi6QYOzfYsGgza23aS2Bz9a6dC5FTXe6hYCsj1qJut0hAOawjETEQT7yR6O4-Nv4ks6hzoYN4O-SS6NdAFuz-88-Vy-rBdv6erj9X3xvEoV5XRMlaSsMLzQvMRNaXIDVVMw3hCouDGYQ6OLGsejZozGhNGQkwrKinGJKZN0njycend-2E8QRtHZoMA52cMwBUHKijBelyWL6NMJVX4IwYMRO2876b8FweJoVWzFX6viaFVgKqLVGL8_L8mgpDPRpLLhtyOvWUEIqSK3PHEQv32w4EVQ0bgCbT2oUejB_m_wB13vmpE</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Aguilar, F.</creator><creator>Solano, J.P.</creator><creator>Vicente, P.G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140601</creationdate><title>Transient modeling of high-inertial thermal bridges in buildings using the equivalent thermal wall method</title><author>Aguilar, F. ; Solano, J.P. ; Vicente, P.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ca354f94d960b6f2fe7b459b1e79ff09ebd480f098553393fde217e6759a035a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equivalence</topic><topic>Equivalent thermal wall</topic><topic>Exact sciences and technology</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High thermal inertia</topic><topic>Mathematical models</topic><topic>Numerical heat conduction</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal bridge</topic><topic>Thermal bridges</topic><topic>Thermal engineering</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilar, F.</creatorcontrib><creatorcontrib>Solano, J.P.</creatorcontrib><creatorcontrib>Vicente, P.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilar, F.</au><au>Solano, J.P.</au><au>Vicente, P.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient modeling of high-inertial thermal bridges in buildings using the equivalent thermal wall method</atitle><jtitle>Applied thermal engineering</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>67</volume><issue>1-2</issue><spage>370</spage><epage>377</epage><pages>370-377</pages><issn>1359-4311</issn><abstract>The method of the equivalent thermal wall has been employed for modeling the transient response of high-inertial thermal bridges. A new strategy is presented in order to adjust the thermal properties of the equivalent three-layered wall, which takes into account the temperature distribution across the thermal bridge in a steady-state heat conduction scenario. Two different thermal bridge topologies created by the junction of a vertical wall and an intermediate or a ground floor slab are analyzed with this method, and its feasibility for the implementation in building energy simulation tools is discussed: if the thermal bridge is not considered, an underestimation of 25% in the heat flux across the bridge is predicted. If the thermal bridge is modeled but its thermal inertia is neglected, a time-delayed heat flux response is retrieved. Conversely, the simulation based on the equivalent wall method provides a response nearly identical to the actual dynamic performance of the thermal bridge. [Display omitted] •Two highly-inertial thermal bridges are analyzed using the equivalent thermal wall method.•We present a method for obtaining the thermal properties of the equivalent walls.•A strategy for the decomposition of the thermal bridges into several walls is devised.•The transient performance of the equivalent thermal walls is compared with classical models.•A reliable analysis of the transient thermal performance through thermal bridges is demonstrated.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2014.03.058</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2014-06, Vol.67 (1-2), p.370-377
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1671598665
source Elsevier ScienceDirect Journals
subjects Applied sciences
Computer simulation
Energy
Energy. Thermal use of fuels
Equivalence
Equivalent thermal wall
Exact sciences and technology
Heat flux
Heat transfer
High thermal inertia
Mathematical models
Numerical heat conduction
Theoretical studies. Data and constants. Metering
Thermal bridge
Thermal bridges
Thermal engineering
Walls
title Transient modeling of high-inertial thermal bridges in buildings using the equivalent thermal wall method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20modeling%20of%20high-inertial%20thermal%20bridges%20in%20buildings%20using%20the%20equivalent%20thermal%20wall%20method&rft.jtitle=Applied%20thermal%20engineering&rft.au=Aguilar,%20F.&rft.date=2014-06-01&rft.volume=67&rft.issue=1-2&rft.spage=370&rft.epage=377&rft.pages=370-377&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2014.03.058&rft_dat=%3Cproquest_cross%3E1671598665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671598665&rft_id=info:pmid/&rft_els_id=S1359431114002373&rfr_iscdi=true