Physical models of rock avalanche spreading behaviour with dynamic fragmentation

The dynamic fragmentation of rock during avalanche motion has been postulated as a mechanism explaining the long runout of large rock avalanches or Sturzströme. This paper investigates whether test conditions that produce dynamic fragmentation can lead to greater runout or spreading of physical mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2012-04, Vol.49 (4), p.460-476
Hauptverfasser: BOWMAN, E. T, TAKE, W. A, RAIT, K. L, HANN, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 4
container_start_page 460
container_title Canadian geotechnical journal
container_volume 49
creator BOWMAN, E. T
TAKE, W. A
RAIT, K. L
HANN, C
description The dynamic fragmentation of rock during avalanche motion has been postulated as a mechanism explaining the long runout of large rock avalanches or Sturzströme. This paper investigates whether test conditions that produce dynamic fragmentation can lead to greater runout or spreading of physical model rock avalanches. Model avalanche experiments were carried out under enhanced acceleration to generate breakage in coal, a fragmentable, brittle solid. Coal blocks were released from a stationary position on a slope to run out on a plane. The motion of the ensuing fragmenting debris was captured using a high-speed camera placed above the horizontal plane. The average position of the front was tracked and the degree of fragmentation of the model avalanches was quantified. The paper presents results of the frontal velocity of the avalanches, corrected for centrifuge Coriolis effects. Comparison is made between the peak and impulsive front velocities, the final runout, and the degree of fragmentation of the model avalanches. Strong relationships are found between runout normalized by the cube root of volume, impulse velocity, and Hardin’s relative breakage parameter, B R . Results are discussed in light of the mechanics involved and are compared with field-scale events.
doi_str_mv 10.1139/t2012-007
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671596637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A286391973</galeid><sourcerecordid>A286391973</sourcerecordid><originalsourceid>FETCH-LOGICAL-a648t-46144a27a6f35961d46f1d20c6e47b01d3cee8a4e67e9873b1f3eb59266faae93</originalsourceid><addsrcrecordid>eNqV0l1r1EAUBuAgFlyrF_6DoAgVmjof2UlyWYofhVKLH9fD2cmZZGoys53JVvffe7YtYktQJBcJwzMvMydvlr3g7Ihz2bydBOOiYKx6lC24YHWhGGePswVj9C1VVT7JnqZ0yRgvSyEW2cVFv03OwJCPocUh5cHmMZjvOVzDAN70mKd1RGid7_IV9nDtwibmP9zU5-3Ww-hMbiN0I_oJJhf8s2zPwpDw-d17P_v2_t3Xk4_F2acPpyfHZwWosp6KUtEBQFSgrFw2irelsrwVzCgsqxXjrTSINZSoKmzqSq64lbhaNkIpC4CN3M8ObnPXMVxtME16dMngQIfGsEmaq4pTsJLVvykTNZOiqXeprx7QS7qup4uQokk-UB0MqJ23YYpgdqH6WNRKNrypJKliRnXoMcIQPFpHy_f8yxlv1u5K_4mOZhA9LdKvmE19c28DmQl_Th1sUtKnXz7_hz2ftSaGlCJavY5uhLilQeldFfVNFTVVkezru6lCoqpRX7xx6fcGsayFakRJ7vDW-WgiJoRo-r_E_gKzTuXR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1001032989</pqid></control><display><type>article</type><title>Physical models of rock avalanche spreading behaviour with dynamic fragmentation</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>BOWMAN, E. T ; TAKE, W. A ; RAIT, K. L ; HANN, C</creator><creatorcontrib>BOWMAN, E. T ; TAKE, W. A ; RAIT, K. L ; HANN, C</creatorcontrib><description>The dynamic fragmentation of rock during avalanche motion has been postulated as a mechanism explaining the long runout of large rock avalanches or Sturzströme. This paper investigates whether test conditions that produce dynamic fragmentation can lead to greater runout or spreading of physical model rock avalanches. Model avalanche experiments were carried out under enhanced acceleration to generate breakage in coal, a fragmentable, brittle solid. Coal blocks were released from a stationary position on a slope to run out on a plane. The motion of the ensuing fragmenting debris was captured using a high-speed camera placed above the horizontal plane. The average position of the front was tracked and the degree of fragmentation of the model avalanches was quantified. The paper presents results of the frontal velocity of the avalanches, corrected for centrifuge Coriolis effects. Comparison is made between the peak and impulsive front velocities, the final runout, and the degree of fragmentation of the model avalanches. Strong relationships are found between runout normalized by the cube root of volume, impulse velocity, and Hardin’s relative breakage parameter, B R . Results are discussed in light of the mechanics involved and are compared with field-scale events.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/t2012-007</identifier><identifier>CODEN: CGJOAH</identifier><language>eng</language><publisher>Ottawa, ON: NRC Research Press</publisher><subject>avalanche rocheuse ; Avalanches ; Breakage ; Canada ; centrifuge ; Coal ; Dynamics ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Environmental aspects ; Exact sciences and technology ; Fragmentation ; Geodynamics ; Geotechnology ; Landslides &amp; mudslides ; Load ; Mechanical properties ; modélisation physique ; Natural hazards: prediction, damages, etc ; New Zealand ; parcours ; physical modelling ; Planes ; Rock ; rock avalanche ; Rocks ; runout ; Spreading</subject><ispartof>Canadian geotechnical journal, 2012-04, Vol.49 (4), p.460-476</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 NRC Research Press</rights><rights>Copyright National Research Council of Canada Apr 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a648t-46144a27a6f35961d46f1d20c6e47b01d3cee8a4e67e9873b1f3eb59266faae93</citedby><cites>FETCH-LOGICAL-a648t-46144a27a6f35961d46f1d20c6e47b01d3cee8a4e67e9873b1f3eb59266faae93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/t2012-007$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/t2012-007$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,776,780,2919,27901,27902,64401,64979</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25826924$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BOWMAN, E. T</creatorcontrib><creatorcontrib>TAKE, W. A</creatorcontrib><creatorcontrib>RAIT, K. L</creatorcontrib><creatorcontrib>HANN, C</creatorcontrib><title>Physical models of rock avalanche spreading behaviour with dynamic fragmentation</title><title>Canadian geotechnical journal</title><description>The dynamic fragmentation of rock during avalanche motion has been postulated as a mechanism explaining the long runout of large rock avalanches or Sturzströme. This paper investigates whether test conditions that produce dynamic fragmentation can lead to greater runout or spreading of physical model rock avalanches. Model avalanche experiments were carried out under enhanced acceleration to generate breakage in coal, a fragmentable, brittle solid. Coal blocks were released from a stationary position on a slope to run out on a plane. The motion of the ensuing fragmenting debris was captured using a high-speed camera placed above the horizontal plane. The average position of the front was tracked and the degree of fragmentation of the model avalanches was quantified. The paper presents results of the frontal velocity of the avalanches, corrected for centrifuge Coriolis effects. Comparison is made between the peak and impulsive front velocities, the final runout, and the degree of fragmentation of the model avalanches. Strong relationships are found between runout normalized by the cube root of volume, impulse velocity, and Hardin’s relative breakage parameter, B R . Results are discussed in light of the mechanics involved and are compared with field-scale events.</description><subject>avalanche rocheuse</subject><subject>Avalanches</subject><subject>Breakage</subject><subject>Canada</subject><subject>centrifuge</subject><subject>Coal</subject><subject>Dynamics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Environmental aspects</subject><subject>Exact sciences and technology</subject><subject>Fragmentation</subject><subject>Geodynamics</subject><subject>Geotechnology</subject><subject>Landslides &amp; mudslides</subject><subject>Load</subject><subject>Mechanical properties</subject><subject>modélisation physique</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>New Zealand</subject><subject>parcours</subject><subject>physical modelling</subject><subject>Planes</subject><subject>Rock</subject><subject>rock avalanche</subject><subject>Rocks</subject><subject>runout</subject><subject>Spreading</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqV0l1r1EAUBuAgFlyrF_6DoAgVmjof2UlyWYofhVKLH9fD2cmZZGoys53JVvffe7YtYktQJBcJwzMvMydvlr3g7Ihz2bydBOOiYKx6lC24YHWhGGePswVj9C1VVT7JnqZ0yRgvSyEW2cVFv03OwJCPocUh5cHmMZjvOVzDAN70mKd1RGid7_IV9nDtwibmP9zU5-3Ww-hMbiN0I_oJJhf8s2zPwpDw-d17P_v2_t3Xk4_F2acPpyfHZwWosp6KUtEBQFSgrFw2irelsrwVzCgsqxXjrTSINZSoKmzqSq64lbhaNkIpC4CN3M8ObnPXMVxtME16dMngQIfGsEmaq4pTsJLVvykTNZOiqXeprx7QS7qup4uQokk-UB0MqJ23YYpgdqH6WNRKNrypJKliRnXoMcIQPFpHy_f8yxlv1u5K_4mOZhA9LdKvmE19c28DmQl_Th1sUtKnXz7_hz2ftSaGlCJavY5uhLilQeldFfVNFTVVkezru6lCoqpRX7xx6fcGsayFakRJ7vDW-WgiJoRo-r_E_gKzTuXR</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>BOWMAN, E. T</creator><creator>TAKE, W. A</creator><creator>RAIT, K. L</creator><creator>HANN, C</creator><general>NRC Research Press</general><general>National Research Council of Canada</general><general>Canadian Science Publishing NRC Research Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20120401</creationdate><title>Physical models of rock avalanche spreading behaviour with dynamic fragmentation</title><author>BOWMAN, E. T ; TAKE, W. A ; RAIT, K. L ; HANN, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a648t-46144a27a6f35961d46f1d20c6e47b01d3cee8a4e67e9873b1f3eb59266faae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>avalanche rocheuse</topic><topic>Avalanches</topic><topic>Breakage</topic><topic>Canada</topic><topic>centrifuge</topic><topic>Coal</topic><topic>Dynamics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Environmental aspects</topic><topic>Exact sciences and technology</topic><topic>Fragmentation</topic><topic>Geodynamics</topic><topic>Geotechnology</topic><topic>Landslides &amp; mudslides</topic><topic>Load</topic><topic>Mechanical properties</topic><topic>modélisation physique</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>New Zealand</topic><topic>parcours</topic><topic>physical modelling</topic><topic>Planes</topic><topic>Rock</topic><topic>rock avalanche</topic><topic>Rocks</topic><topic>runout</topic><topic>Spreading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOWMAN, E. T</creatorcontrib><creatorcontrib>TAKE, W. A</creatorcontrib><creatorcontrib>RAIT, K. L</creatorcontrib><creatorcontrib>HANN, C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOWMAN, E. T</au><au>TAKE, W. A</au><au>RAIT, K. L</au><au>HANN, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical models of rock avalanche spreading behaviour with dynamic fragmentation</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>49</volume><issue>4</issue><spage>460</spage><epage>476</epage><pages>460-476</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><coden>CGJOAH</coden><abstract>The dynamic fragmentation of rock during avalanche motion has been postulated as a mechanism explaining the long runout of large rock avalanches or Sturzströme. This paper investigates whether test conditions that produce dynamic fragmentation can lead to greater runout or spreading of physical model rock avalanches. Model avalanche experiments were carried out under enhanced acceleration to generate breakage in coal, a fragmentable, brittle solid. Coal blocks were released from a stationary position on a slope to run out on a plane. The motion of the ensuing fragmenting debris was captured using a high-speed camera placed above the horizontal plane. The average position of the front was tracked and the degree of fragmentation of the model avalanches was quantified. The paper presents results of the frontal velocity of the avalanches, corrected for centrifuge Coriolis effects. Comparison is made between the peak and impulsive front velocities, the final runout, and the degree of fragmentation of the model avalanches. Strong relationships are found between runout normalized by the cube root of volume, impulse velocity, and Hardin’s relative breakage parameter, B R . Results are discussed in light of the mechanics involved and are compared with field-scale events.</abstract><cop>Ottawa, ON</cop><pub>NRC Research Press</pub><doi>10.1139/t2012-007</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2012-04, Vol.49 (4), p.460-476
issn 0008-3674
1208-6010
language eng
recordid cdi_proquest_miscellaneous_1671596637
source NRC Research Press; Alma/SFX Local Collection
subjects avalanche rocheuse
Avalanches
Breakage
Canada
centrifuge
Coal
Dynamics
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Engineering geology
Environmental aspects
Exact sciences and technology
Fragmentation
Geodynamics
Geotechnology
Landslides & mudslides
Load
Mechanical properties
modélisation physique
Natural hazards: prediction, damages, etc
New Zealand
parcours
physical modelling
Planes
Rock
rock avalanche
Rocks
runout
Spreading
title Physical models of rock avalanche spreading behaviour with dynamic fragmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20models%20of%20rock%20avalanche%20spreading%20behaviour%20with%20dynamic%20fragmentation&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=BOWMAN,%20E.%20T&rft.date=2012-04-01&rft.volume=49&rft.issue=4&rft.spage=460&rft.epage=476&rft.pages=460-476&rft.issn=0008-3674&rft.eissn=1208-6010&rft.coden=CGJOAH&rft_id=info:doi/10.1139/t2012-007&rft_dat=%3Cgale_proqu%3EA286391973%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1001032989&rft_id=info:pmid/&rft_galeid=A286391973&rfr_iscdi=true