Convergence of the hyperspherical harmonic expansion for crystallographic texture

Advances in instrumentation allow a material texture to be measured as a collection of spatially resolved crystallite orientations rather than as a collection of pole figures. However, the hyperspherical harmonic expansion of a collection of spatially resolved crystallite orientations is subject to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2013-12, Vol.46 (6), p.1722-1728
Hauptverfasser: Mason, Jeremy K., Johnson, Oliver K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1728
container_issue 6
container_start_page 1722
container_title Journal of applied crystallography
container_volume 46
creator Mason, Jeremy K.
Johnson, Oliver K.
description Advances in instrumentation allow a material texture to be measured as a collection of spatially resolved crystallite orientations rather than as a collection of pole figures. However, the hyperspherical harmonic expansion of a collection of spatially resolved crystallite orientations is subject to significant truncation error, resulting in ringing artifacts (spurious oscillations around sharp transitions) and false peaks in the orientation distribution function. This article finds that the ringing artifacts and the accompanying regions of negative probability density may be mitigated or removed entirely by modifying the coefficients of the hyperspherical harmonic expansion by a simple multiplicative factor. An addition theorem for the hyperspherical harmonics is derived as an intermediate result.
doi_str_mv 10.1107/S0021889813022814
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671595045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671595045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3935-694fe5967e73338d3164c593d7654384589633cb70190d23810ed8d43c4c04743</originalsourceid><addsrcrecordid>eNqFkE1v1EAMhiNUJLaFH8AtEhcuaT2Z7yOK2i1oBdoCWm6jYeJsss1m0pkEmn_foFQVogdOtuTnsew3Sd4SOCcE5MVXgJwopRWhkOeKsBfJigiAjEshT_7qXyWnMR4AiJB5vkq2he9-Ydhj5zD1VTrUmNZTjyH2NYbG2TatbTj6rnEp3ve2i43v0sqH1IUpDrZt_T7Yvp7HA94PY8DXycvKthHfPNaz5PvV5bfiOtt8WX8sPmwyRzXlmdCsQq6FREkpVSUlgjmuaSkFZ1QxrrSg1P2UQDSUOVUEsFQlo445YJLRs-T9srcP_m7EOJhjEx22re3Qj9HMDxKuOTA-o-_-QQ9-DN18nSGM6xxAiHymyEK54GMMWJk-NEcbJkPA_AnZPAt5dtTi_G5anP4vmE_Fzc3u8ahsUZs4J_ek2nBrhKSSm93ntdlspdr-KJhR9AF98oyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459200662</pqid></control><display><type>article</type><title>Convergence of the hyperspherical harmonic expansion for crystallographic texture</title><source>Wiley Journals</source><source>Alma/SFX Local Collection</source><creator>Mason, Jeremy K. ; Johnson, Oliver K.</creator><creatorcontrib>Mason, Jeremy K. ; Johnson, Oliver K.</creatorcontrib><description>Advances in instrumentation allow a material texture to be measured as a collection of spatially resolved crystallite orientations rather than as a collection of pole figures. However, the hyperspherical harmonic expansion of a collection of spatially resolved crystallite orientations is subject to significant truncation error, resulting in ringing artifacts (spurious oscillations around sharp transitions) and false peaks in the orientation distribution function. This article finds that the ringing artifacts and the accompanying regions of negative probability density may be mitigated or removed entirely by modifying the coefficients of the hyperspherical harmonic expansion by a simple multiplicative factor. An addition theorem for the hyperspherical harmonics is derived as an intermediate result.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S0021889813022814</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Collection ; Crystallites ; Crystallography ; Density ; Harmonics ; hyperspherical harmonics ; Orientation ; orientation distribution functions ; Scientific apparatus &amp; instruments ; Surface layer ; Texture</subject><ispartof>Journal of applied crystallography, 2013-12, Vol.46 (6), p.1722-1728</ispartof><rights>Mason and Johnson 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3935-694fe5967e73338d3164c593d7654384589633cb70190d23810ed8d43c4c04743</citedby><cites>FETCH-LOGICAL-c3935-694fe5967e73338d3164c593d7654384589633cb70190d23810ed8d43c4c04743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0021889813022814$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0021889813022814$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mason, Jeremy K.</creatorcontrib><creatorcontrib>Johnson, Oliver K.</creatorcontrib><title>Convergence of the hyperspherical harmonic expansion for crystallographic texture</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>Advances in instrumentation allow a material texture to be measured as a collection of spatially resolved crystallite orientations rather than as a collection of pole figures. However, the hyperspherical harmonic expansion of a collection of spatially resolved crystallite orientations is subject to significant truncation error, resulting in ringing artifacts (spurious oscillations around sharp transitions) and false peaks in the orientation distribution function. This article finds that the ringing artifacts and the accompanying regions of negative probability density may be mitigated or removed entirely by modifying the coefficients of the hyperspherical harmonic expansion by a simple multiplicative factor. An addition theorem for the hyperspherical harmonics is derived as an intermediate result.</description><subject>Collection</subject><subject>Crystallites</subject><subject>Crystallography</subject><subject>Density</subject><subject>Harmonics</subject><subject>hyperspherical harmonics</subject><subject>Orientation</subject><subject>orientation distribution functions</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Surface layer</subject><subject>Texture</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1EAMhiNUJLaFH8AtEhcuaT2Z7yOK2i1oBdoCWm6jYeJsss1m0pkEmn_foFQVogdOtuTnsew3Sd4SOCcE5MVXgJwopRWhkOeKsBfJigiAjEshT_7qXyWnMR4AiJB5vkq2he9-Ydhj5zD1VTrUmNZTjyH2NYbG2TatbTj6rnEp3ve2i43v0sqH1IUpDrZt_T7Yvp7HA94PY8DXycvKthHfPNaz5PvV5bfiOtt8WX8sPmwyRzXlmdCsQq6FREkpVSUlgjmuaSkFZ1QxrrSg1P2UQDSUOVUEsFQlo445YJLRs-T9srcP_m7EOJhjEx22re3Qj9HMDxKuOTA-o-_-QQ9-DN18nSGM6xxAiHymyEK54GMMWJk-NEcbJkPA_AnZPAt5dtTi_G5anP4vmE_Fzc3u8ahsUZs4J_ek2nBrhKSSm93ntdlspdr-KJhR9AF98oyE</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Mason, Jeremy K.</creator><creator>Johnson, Oliver K.</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Convergence of the hyperspherical harmonic expansion for crystallographic texture</title><author>Mason, Jeremy K. ; Johnson, Oliver K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3935-694fe5967e73338d3164c593d7654384589633cb70190d23810ed8d43c4c04743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Collection</topic><topic>Crystallites</topic><topic>Crystallography</topic><topic>Density</topic><topic>Harmonics</topic><topic>hyperspherical harmonics</topic><topic>Orientation</topic><topic>orientation distribution functions</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mason, Jeremy K.</creatorcontrib><creatorcontrib>Johnson, Oliver K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mason, Jeremy K.</au><au>Johnson, Oliver K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of the hyperspherical harmonic expansion for crystallographic texture</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>46</volume><issue>6</issue><spage>1722</spage><epage>1728</epage><pages>1722-1728</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Advances in instrumentation allow a material texture to be measured as a collection of spatially resolved crystallite orientations rather than as a collection of pole figures. However, the hyperspherical harmonic expansion of a collection of spatially resolved crystallite orientations is subject to significant truncation error, resulting in ringing artifacts (spurious oscillations around sharp transitions) and false peaks in the orientation distribution function. This article finds that the ringing artifacts and the accompanying regions of negative probability density may be mitigated or removed entirely by modifying the coefficients of the hyperspherical harmonic expansion by a simple multiplicative factor. An addition theorem for the hyperspherical harmonics is derived as an intermediate result.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S0021889813022814</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2013-12, Vol.46 (6), p.1722-1728
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_proquest_miscellaneous_1671595045
source Wiley Journals; Alma/SFX Local Collection
subjects Collection
Crystallites
Crystallography
Density
Harmonics
hyperspherical harmonics
Orientation
orientation distribution functions
Scientific apparatus & instruments
Surface layer
Texture
title Convergence of the hyperspherical harmonic expansion for crystallographic texture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20the%20hyperspherical%20harmonic%20expansion%20for%20crystallographic%20texture&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Mason,%20Jeremy%20K.&rft.date=2013-12-01&rft.volume=46&rft.issue=6&rft.spage=1722&rft.epage=1728&rft.pages=1722-1728&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S0021889813022814&rft_dat=%3Cproquest_cross%3E1671595045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459200662&rft_id=info:pmid/&rfr_iscdi=true