Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies

In this paper, the dynamics of a system of two coupled van der Pol oscillators is investigated. The coupling between the two oscillators consists of adding to each one’s amplitude a perturbation proportional to the other one. The coupling between two laser oscillators and the coupling between two va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2014-04, Vol.76 (2), p.1119-1132
Hauptverfasser: Kengne, J., Chedjou, J. C., Kom, M., Kyamakya, K., Tamba, V. Kamdoum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1132
container_issue 2
container_start_page 1119
container_title Nonlinear dynamics
container_volume 76
creator Kengne, J.
Chedjou, J. C.
Kom, M.
Kyamakya, K.
Tamba, V. Kamdoum
description In this paper, the dynamics of a system of two coupled van der Pol oscillators is investigated. The coupling between the two oscillators consists of adding to each one’s amplitude a perturbation proportional to the other one. The coupling between two laser oscillators and the coupling between two vacuum tube oscillators are examples of physical/experimental systems related to the model considered in this paper. The stability of fixed points and the symmetries of the model equations are discussed. The bifurcations structures of the system are analyzed with particular attention on the effects of frequency detuning between the two oscillators. It is found that the system exhibits a variety of bifurcations including symmetry breaking, period doubling, and crises when monitoring the frequency detuning parameter in tiny steps. The multistability property of the system for special sets of its parameters is also analyzed. An experimental study of the coupled system is carried out in this work. An appropriate electronic simulator is proposed for the investigations of the dynamic behavior of the system. Correspondences are established between the coefficients of the system model and the components of the electronic circuit. A comparison of experimental and numerical results yields a very good agreement.
doi_str_mv 10.1007/s11071-013-1195-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671594941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671594941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a12d1ea6b9d332a8b3ac7b82325c2cd995177691f13ae9c23cb2cfcb065ce8873</originalsourceid><addsrcrecordid>eNp1kd9qFjEQxYMo-Fl9AO8CvemFazPJZnfTOyn-g4IiCr0L2Wy2Tckmn5ls676Az23qVxQEr4YZfudwhkPIS2CvgbH-FAFYDw0D0QAo2WyPyA5kLxreqcvHZMcUbxum2OVT8gzxhjEmOBt25OcXd7UGk2lC60MwxaeIr6i9NqkOEye6rKF4LGb0wZeN-kgNxQ2LW2iaablL1KZ1H9xEb02kk8v0cwp_7FLGMxrXxWVvTfht6H7s67a4WOoByzp5h8_Jk9kEdC8e5hH59u7t1_MPzcWn9x_P31w0tgVZGgN8Ame6UU1CcDOMwth-HLjg0nI7KSWh7zsFMwjjlOXCjtzOdmSdtG4YenFETg6--5y-rw6LXjxaV5NGl1bU0PUgVataqOjxP-hNWnOs6TTnlZGDbGWl4EDZnBCzm_W-_mbypoHp-2b0oRldm9H3zeitavhBg5WNVy7_df6_6BcNmJPu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259458545</pqid></control><display><type>article</type><title>Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies</title><source>Springer Nature - Complete Springer Journals</source><creator>Kengne, J. ; Chedjou, J. C. ; Kom, M. ; Kyamakya, K. ; Tamba, V. Kamdoum</creator><creatorcontrib>Kengne, J. ; Chedjou, J. C. ; Kom, M. ; Kyamakya, K. ; Tamba, V. Kamdoum</creatorcontrib><description>In this paper, the dynamics of a system of two coupled van der Pol oscillators is investigated. The coupling between the two oscillators consists of adding to each one’s amplitude a perturbation proportional to the other one. The coupling between two laser oscillators and the coupling between two vacuum tube oscillators are examples of physical/experimental systems related to the model considered in this paper. The stability of fixed points and the symmetries of the model equations are discussed. The bifurcations structures of the system are analyzed with particular attention on the effects of frequency detuning between the two oscillators. It is found that the system exhibits a variety of bifurcations including symmetry breaking, period doubling, and crises when monitoring the frequency detuning parameter in tiny steps. The multistability property of the system for special sets of its parameters is also analyzed. An experimental study of the coupled system is carried out in this work. An appropriate electronic simulator is proposed for the investigations of the dynamic behavior of the system. Correspondences are established between the coefficients of the system model and the components of the electronic circuit. A comparison of experimental and numerical results yields a very good agreement.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-013-1195-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Broken symmetry ; Circuits ; Classical Mechanics ; Computer simulation ; Control ; Coupling ; Dynamic tests ; Dynamical Systems ; Dynamics ; Electronic circuits ; Engineering ; Joining ; Mathematical models ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Oscillators ; Parameters ; Period doubling ; Perturbation ; Vacuum tube oscillators ; Vibration</subject><ispartof>Nonlinear dynamics, 2014-04, Vol.76 (2), p.1119-1132</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a12d1ea6b9d332a8b3ac7b82325c2cd995177691f13ae9c23cb2cfcb065ce8873</citedby><cites>FETCH-LOGICAL-c415t-a12d1ea6b9d332a8b3ac7b82325c2cd995177691f13ae9c23cb2cfcb065ce8873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-013-1195-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-013-1195-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kengne, J.</creatorcontrib><creatorcontrib>Chedjou, J. C.</creatorcontrib><creatorcontrib>Kom, M.</creatorcontrib><creatorcontrib>Kyamakya, K.</creatorcontrib><creatorcontrib>Tamba, V. Kamdoum</creatorcontrib><title>Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, the dynamics of a system of two coupled van der Pol oscillators is investigated. The coupling between the two oscillators consists of adding to each one’s amplitude a perturbation proportional to the other one. The coupling between two laser oscillators and the coupling between two vacuum tube oscillators are examples of physical/experimental systems related to the model considered in this paper. The stability of fixed points and the symmetries of the model equations are discussed. The bifurcations structures of the system are analyzed with particular attention on the effects of frequency detuning between the two oscillators. It is found that the system exhibits a variety of bifurcations including symmetry breaking, period doubling, and crises when monitoring the frequency detuning parameter in tiny steps. The multistability property of the system for special sets of its parameters is also analyzed. An experimental study of the coupled system is carried out in this work. An appropriate electronic simulator is proposed for the investigations of the dynamic behavior of the system. Correspondences are established between the coefficients of the system model and the components of the electronic circuit. A comparison of experimental and numerical results yields a very good agreement.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Broken symmetry</subject><subject>Circuits</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Coupling</subject><subject>Dynamic tests</subject><subject>Dynamical Systems</subject><subject>Dynamics</subject><subject>Electronic circuits</subject><subject>Engineering</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Oscillators</subject><subject>Parameters</subject><subject>Period doubling</subject><subject>Perturbation</subject><subject>Vacuum tube oscillators</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kd9qFjEQxYMo-Fl9AO8CvemFazPJZnfTOyn-g4IiCr0L2Wy2Tckmn5ls676Az23qVxQEr4YZfudwhkPIS2CvgbH-FAFYDw0D0QAo2WyPyA5kLxreqcvHZMcUbxum2OVT8gzxhjEmOBt25OcXd7UGk2lC60MwxaeIr6i9NqkOEye6rKF4LGb0wZeN-kgNxQ2LW2iaablL1KZ1H9xEb02kk8v0cwp_7FLGMxrXxWVvTfht6H7s67a4WOoByzp5h8_Jk9kEdC8e5hH59u7t1_MPzcWn9x_P31w0tgVZGgN8Ame6UU1CcDOMwth-HLjg0nI7KSWh7zsFMwjjlOXCjtzOdmSdtG4YenFETg6--5y-rw6LXjxaV5NGl1bU0PUgVataqOjxP-hNWnOs6TTnlZGDbGWl4EDZnBCzm_W-_mbypoHp-2b0oRldm9H3zeitavhBg5WNVy7_df6_6BcNmJPu</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Kengne, J.</creator><creator>Chedjou, J. C.</creator><creator>Kom, M.</creator><creator>Kyamakya, K.</creator><creator>Tamba, V. Kamdoum</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies</title><author>Kengne, J. ; Chedjou, J. C. ; Kom, M. ; Kyamakya, K. ; Tamba, V. Kamdoum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a12d1ea6b9d332a8b3ac7b82325c2cd995177691f13ae9c23cb2cfcb065ce8873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Broken symmetry</topic><topic>Circuits</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Coupling</topic><topic>Dynamic tests</topic><topic>Dynamical Systems</topic><topic>Dynamics</topic><topic>Electronic circuits</topic><topic>Engineering</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Oscillators</topic><topic>Parameters</topic><topic>Period doubling</topic><topic>Perturbation</topic><topic>Vacuum tube oscillators</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kengne, J.</creatorcontrib><creatorcontrib>Chedjou, J. C.</creatorcontrib><creatorcontrib>Kom, M.</creatorcontrib><creatorcontrib>Kyamakya, K.</creatorcontrib><creatorcontrib>Tamba, V. Kamdoum</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kengne, J.</au><au>Chedjou, J. C.</au><au>Kom, M.</au><au>Kyamakya, K.</au><au>Tamba, V. Kamdoum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>76</volume><issue>2</issue><spage>1119</spage><epage>1132</epage><pages>1119-1132</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, the dynamics of a system of two coupled van der Pol oscillators is investigated. The coupling between the two oscillators consists of adding to each one’s amplitude a perturbation proportional to the other one. The coupling between two laser oscillators and the coupling between two vacuum tube oscillators are examples of physical/experimental systems related to the model considered in this paper. The stability of fixed points and the symmetries of the model equations are discussed. The bifurcations structures of the system are analyzed with particular attention on the effects of frequency detuning between the two oscillators. It is found that the system exhibits a variety of bifurcations including symmetry breaking, period doubling, and crises when monitoring the frequency detuning parameter in tiny steps. The multistability property of the system for special sets of its parameters is also analyzed. An experimental study of the coupled system is carried out in this work. An appropriate electronic simulator is proposed for the investigations of the dynamic behavior of the system. Correspondences are established between the coefficients of the system model and the components of the electronic circuit. A comparison of experimental and numerical results yields a very good agreement.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-013-1195-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2014-04, Vol.76 (2), p.1119-1132
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1671594941
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Bifurcations
Broken symmetry
Circuits
Classical Mechanics
Computer simulation
Control
Coupling
Dynamic tests
Dynamical Systems
Dynamics
Electronic circuits
Engineering
Joining
Mathematical models
Mechanical Engineering
Nonlinear dynamics
Original Paper
Oscillators
Parameters
Period doubling
Perturbation
Vacuum tube oscillators
Vibration
title Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20oscillations,%20chaos,%20and%20multistability%20in%20a%20system%20of%20two%20coupled%20van%20der%20Pol%20oscillators:%20numerical%20and%20experimental%20studies&rft.jtitle=Nonlinear%20dynamics&rft.au=Kengne,%20J.&rft.date=2014-04-01&rft.volume=76&rft.issue=2&rft.spage=1119&rft.epage=1132&rft.pages=1119-1132&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-013-1195-y&rft_dat=%3Cproquest_cross%3E1671594941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259458545&rft_id=info:pmid/&rfr_iscdi=true