Learning to rank biological motion trajectories

Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 2013-06, Vol.31 (6-7), p.502-510
Hauptverfasser: Fasciano, Thomas, Souvenir, Richard, Shin, Min C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 6-7
container_start_page 502
container_title Image and vision computing
container_volume 31
creator Fasciano, Thomas
Souvenir, Richard
Shin, Min C.
description Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additionally, the criteria used for similarity may differ depending on the user's particular interest or the specific query behavior. We present a rank-based distance metric learning method that combines user input and a new set of biologically-motivated features for biological trajectory matching. We show that, with a small amount of user effort, this method outperforms existing trajectory methods. On an information retrieval task using real world data, our method outperforms recent, related methods by ~9%. To learn a distance metric for trajectory matching, a user selects a query trajectory (left) and provides feedback by determining which from a pair of trajectories (middle) is more similar to the query. Our algorithm uses this feedback and learns a set of feature weights to be used for trajectory matching (right). [Display omitted] ► Biologically-motivated features for cell trajectory matching. ► Leverages user input for semi-supervised distance metric learning. ► Outperforms shape-based approaches on real-world cell trajectory retrieval problem.
doi_str_mv 10.1016/j.imavis.2012.07.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671593625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885612001151</els_id><sourcerecordid>1372644431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-71313177bce0a0ab90fc9e814709d9b0a7b29a7f1e7a9b0000e99ba16fb9c5403</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEqPwDzj0yKWdnX6kuSChiS9pEhc4R2nmTildM5JuEv-eTOUM9sG29PqV_TB2i5AjYL3sc7vTRxtyDshzEDkgnLEFNoJnDRbNOVsAr2PfVPUluwqhBwABQi7Yck3aj3bcppNLvR4_09a6wW2t0UO6c5N1Yzp53ZOZnLcUrtlFp4dAN781YR9Pj--rl2z99vy6elhnpuA4ZQKLmEK0hkCDbiV0RlKDpQC5kS1o0XKpRYckdBxjkJStxrprpalKKBJ2N_vuvfs6UJjUzgZDw6BHcoegsBZYyaLm1f_SQvC6LMt4UcLKWWq8C8FTp_Y-ovPfCkGdUKpezSjVCaUCoSLKuHY_r1H8-GjJq2AsjYY21kcwauPs3wY_QBt9ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372644431</pqid></control><display><type>article</type><title>Learning to rank biological motion trajectories</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fasciano, Thomas ; Souvenir, Richard ; Shin, Min C.</creator><creatorcontrib>Fasciano, Thomas ; Souvenir, Richard ; Shin, Min C.</creatorcontrib><description>Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additionally, the criteria used for similarity may differ depending on the user's particular interest or the specific query behavior. We present a rank-based distance metric learning method that combines user input and a new set of biologically-motivated features for biological trajectory matching. We show that, with a small amount of user effort, this method outperforms existing trajectory methods. On an information retrieval task using real world data, our method outperforms recent, related methods by ~9%. To learn a distance metric for trajectory matching, a user selects a query trajectory (left) and provides feedback by determining which from a pair of trajectories (middle) is more similar to the query. Our algorithm uses this feedback and learns a set of feature weights to be used for trajectory matching (right). [Display omitted] ► Biologically-motivated features for cell trajectory matching. ► Leverages user input for semi-supervised distance metric learning. ► Outperforms shape-based approaches on real-world cell trajectory retrieval problem.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/j.imavis.2012.07.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biological ; Biomedical imaging ; Cell motion ; Criteria ; Learning ; Matching ; Motion analysis ; Rank-based learning ; Similarity ; Tasks ; Trajectories ; Transforms</subject><ispartof>Image and vision computing, 2013-06, Vol.31 (6-7), p.502-510</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-71313177bce0a0ab90fc9e814709d9b0a7b29a7f1e7a9b0000e99ba16fb9c5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.imavis.2012.07.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Fasciano, Thomas</creatorcontrib><creatorcontrib>Souvenir, Richard</creatorcontrib><creatorcontrib>Shin, Min C.</creatorcontrib><title>Learning to rank biological motion trajectories</title><title>Image and vision computing</title><description>Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additionally, the criteria used for similarity may differ depending on the user's particular interest or the specific query behavior. We present a rank-based distance metric learning method that combines user input and a new set of biologically-motivated features for biological trajectory matching. We show that, with a small amount of user effort, this method outperforms existing trajectory methods. On an information retrieval task using real world data, our method outperforms recent, related methods by ~9%. To learn a distance metric for trajectory matching, a user selects a query trajectory (left) and provides feedback by determining which from a pair of trajectories (middle) is more similar to the query. Our algorithm uses this feedback and learns a set of feature weights to be used for trajectory matching (right). [Display omitted] ► Biologically-motivated features for cell trajectory matching. ► Leverages user input for semi-supervised distance metric learning. ► Outperforms shape-based approaches on real-world cell trajectory retrieval problem.</description><subject>Biological</subject><subject>Biomedical imaging</subject><subject>Cell motion</subject><subject>Criteria</subject><subject>Learning</subject><subject>Matching</subject><subject>Motion analysis</subject><subject>Rank-based learning</subject><subject>Similarity</subject><subject>Tasks</subject><subject>Trajectories</subject><subject>Transforms</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEqPwDzj0yKWdnX6kuSChiS9pEhc4R2nmTildM5JuEv-eTOUM9sG29PqV_TB2i5AjYL3sc7vTRxtyDshzEDkgnLEFNoJnDRbNOVsAr2PfVPUluwqhBwABQi7Yck3aj3bcppNLvR4_09a6wW2t0UO6c5N1Yzp53ZOZnLcUrtlFp4dAN781YR9Pj--rl2z99vy6elhnpuA4ZQKLmEK0hkCDbiV0RlKDpQC5kS1o0XKpRYckdBxjkJStxrprpalKKBJ2N_vuvfs6UJjUzgZDw6BHcoegsBZYyaLm1f_SQvC6LMt4UcLKWWq8C8FTp_Y-ovPfCkGdUKpezSjVCaUCoSLKuHY_r1H8-GjJq2AsjYY21kcwauPs3wY_QBt9ZQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Fasciano, Thomas</creator><creator>Souvenir, Richard</creator><creator>Shin, Min C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>Learning to rank biological motion trajectories</title><author>Fasciano, Thomas ; Souvenir, Richard ; Shin, Min C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-71313177bce0a0ab90fc9e814709d9b0a7b29a7f1e7a9b0000e99ba16fb9c5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological</topic><topic>Biomedical imaging</topic><topic>Cell motion</topic><topic>Criteria</topic><topic>Learning</topic><topic>Matching</topic><topic>Motion analysis</topic><topic>Rank-based learning</topic><topic>Similarity</topic><topic>Tasks</topic><topic>Trajectories</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fasciano, Thomas</creatorcontrib><creatorcontrib>Souvenir, Richard</creatorcontrib><creatorcontrib>Shin, Min C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fasciano, Thomas</au><au>Souvenir, Richard</au><au>Shin, Min C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to rank biological motion trajectories</atitle><jtitle>Image and vision computing</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>31</volume><issue>6-7</issue><spage>502</spage><epage>510</epage><pages>502-510</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additionally, the criteria used for similarity may differ depending on the user's particular interest or the specific query behavior. We present a rank-based distance metric learning method that combines user input and a new set of biologically-motivated features for biological trajectory matching. We show that, with a small amount of user effort, this method outperforms existing trajectory methods. On an information retrieval task using real world data, our method outperforms recent, related methods by ~9%. To learn a distance metric for trajectory matching, a user selects a query trajectory (left) and provides feedback by determining which from a pair of trajectories (middle) is more similar to the query. Our algorithm uses this feedback and learns a set of feature weights to be used for trajectory matching (right). [Display omitted] ► Biologically-motivated features for cell trajectory matching. ► Leverages user input for semi-supervised distance metric learning. ► Outperforms shape-based approaches on real-world cell trajectory retrieval problem.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.imavis.2012.07.010</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-8856
ispartof Image and vision computing, 2013-06, Vol.31 (6-7), p.502-510
issn 0262-8856
1872-8138
language eng
recordid cdi_proquest_miscellaneous_1671593625
source ScienceDirect Journals (5 years ago - present)
subjects Biological
Biomedical imaging
Cell motion
Criteria
Learning
Matching
Motion analysis
Rank-based learning
Similarity
Tasks
Trajectories
Transforms
title Learning to rank biological motion trajectories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20rank%20biological%20motion%20trajectories&rft.jtitle=Image%20and%20vision%20computing&rft.au=Fasciano,%20Thomas&rft.date=2013-06-01&rft.volume=31&rft.issue=6-7&rft.spage=502&rft.epage=510&rft.pages=502-510&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/j.imavis.2012.07.010&rft_dat=%3Cproquest_cross%3E1372644431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372644431&rft_id=info:pmid/&rft_els_id=S0262885612001151&rfr_iscdi=true