Learning to rank biological motion trajectories
Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additi...
Gespeichert in:
Veröffentlicht in: | Image and vision computing 2013-06, Vol.31 (6-7), p.502-510 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 6-7 |
container_start_page | 502 |
container_title | Image and vision computing |
container_volume | 31 |
creator | Fasciano, Thomas Souvenir, Richard Shin, Min C. |
description | Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additionally, the criteria used for similarity may differ depending on the user's particular interest or the specific query behavior. We present a rank-based distance metric learning method that combines user input and a new set of biologically-motivated features for biological trajectory matching. We show that, with a small amount of user effort, this method outperforms existing trajectory methods. On an information retrieval task using real world data, our method outperforms recent, related methods by ~9%.
To learn a distance metric for trajectory matching, a user selects a query trajectory (left) and provides feedback by determining which from a pair of trajectories (middle) is more similar to the query. Our algorithm uses this feedback and learns a set of feature weights to be used for trajectory matching (right). [Display omitted]
► Biologically-motivated features for cell trajectory matching. ► Leverages user input for semi-supervised distance metric learning. ► Outperforms shape-based approaches on real-world cell trajectory retrieval problem. |
doi_str_mv | 10.1016/j.imavis.2012.07.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671593625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885612001151</els_id><sourcerecordid>1372644431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-71313177bce0a0ab90fc9e814709d9b0a7b29a7f1e7a9b0000e99ba16fb9c5403</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEqPwDzj0yKWdnX6kuSChiS9pEhc4R2nmTildM5JuEv-eTOUM9sG29PqV_TB2i5AjYL3sc7vTRxtyDshzEDkgnLEFNoJnDRbNOVsAr2PfVPUluwqhBwABQi7Yck3aj3bcppNLvR4_09a6wW2t0UO6c5N1Yzp53ZOZnLcUrtlFp4dAN781YR9Pj--rl2z99vy6elhnpuA4ZQKLmEK0hkCDbiV0RlKDpQC5kS1o0XKpRYckdBxjkJStxrprpalKKBJ2N_vuvfs6UJjUzgZDw6BHcoegsBZYyaLm1f_SQvC6LMt4UcLKWWq8C8FTp_Y-ovPfCkGdUKpezSjVCaUCoSLKuHY_r1H8-GjJq2AsjYY21kcwauPs3wY_QBt9ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372644431</pqid></control><display><type>article</type><title>Learning to rank biological motion trajectories</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fasciano, Thomas ; Souvenir, Richard ; Shin, Min C.</creator><creatorcontrib>Fasciano, Thomas ; Souvenir, Richard ; Shin, Min C.</creatorcontrib><description>Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additionally, the criteria used for similarity may differ depending on the user's particular interest or the specific query behavior. We present a rank-based distance metric learning method that combines user input and a new set of biologically-motivated features for biological trajectory matching. We show that, with a small amount of user effort, this method outperforms existing trajectory methods. On an information retrieval task using real world data, our method outperforms recent, related methods by ~9%.
To learn a distance metric for trajectory matching, a user selects a query trajectory (left) and provides feedback by determining which from a pair of trajectories (middle) is more similar to the query. Our algorithm uses this feedback and learns a set of feature weights to be used for trajectory matching (right). [Display omitted]
► Biologically-motivated features for cell trajectory matching. ► Leverages user input for semi-supervised distance metric learning. ► Outperforms shape-based approaches on real-world cell trajectory retrieval problem.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/j.imavis.2012.07.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biological ; Biomedical imaging ; Cell motion ; Criteria ; Learning ; Matching ; Motion analysis ; Rank-based learning ; Similarity ; Tasks ; Trajectories ; Transforms</subject><ispartof>Image and vision computing, 2013-06, Vol.31 (6-7), p.502-510</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-71313177bce0a0ab90fc9e814709d9b0a7b29a7f1e7a9b0000e99ba16fb9c5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.imavis.2012.07.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Fasciano, Thomas</creatorcontrib><creatorcontrib>Souvenir, Richard</creatorcontrib><creatorcontrib>Shin, Min C.</creatorcontrib><title>Learning to rank biological motion trajectories</title><title>Image and vision computing</title><description>Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additionally, the criteria used for similarity may differ depending on the user's particular interest or the specific query behavior. We present a rank-based distance metric learning method that combines user input and a new set of biologically-motivated features for biological trajectory matching. We show that, with a small amount of user effort, this method outperforms existing trajectory methods. On an information retrieval task using real world data, our method outperforms recent, related methods by ~9%.
To learn a distance metric for trajectory matching, a user selects a query trajectory (left) and provides feedback by determining which from a pair of trajectories (middle) is more similar to the query. Our algorithm uses this feedback and learns a set of feature weights to be used for trajectory matching (right). [Display omitted]
► Biologically-motivated features for cell trajectory matching. ► Leverages user input for semi-supervised distance metric learning. ► Outperforms shape-based approaches on real-world cell trajectory retrieval problem.</description><subject>Biological</subject><subject>Biomedical imaging</subject><subject>Cell motion</subject><subject>Criteria</subject><subject>Learning</subject><subject>Matching</subject><subject>Motion analysis</subject><subject>Rank-based learning</subject><subject>Similarity</subject><subject>Tasks</subject><subject>Trajectories</subject><subject>Transforms</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEqPwDzj0yKWdnX6kuSChiS9pEhc4R2nmTildM5JuEv-eTOUM9sG29PqV_TB2i5AjYL3sc7vTRxtyDshzEDkgnLEFNoJnDRbNOVsAr2PfVPUluwqhBwABQi7Yck3aj3bcppNLvR4_09a6wW2t0UO6c5N1Yzp53ZOZnLcUrtlFp4dAN781YR9Pj--rl2z99vy6elhnpuA4ZQKLmEK0hkCDbiV0RlKDpQC5kS1o0XKpRYckdBxjkJStxrprpalKKBJ2N_vuvfs6UJjUzgZDw6BHcoegsBZYyaLm1f_SQvC6LMt4UcLKWWq8C8FTp_Y-ovPfCkGdUKpezSjVCaUCoSLKuHY_r1H8-GjJq2AsjYY21kcwauPs3wY_QBt9ZQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Fasciano, Thomas</creator><creator>Souvenir, Richard</creator><creator>Shin, Min C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>Learning to rank biological motion trajectories</title><author>Fasciano, Thomas ; Souvenir, Richard ; Shin, Min C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-71313177bce0a0ab90fc9e814709d9b0a7b29a7f1e7a9b0000e99ba16fb9c5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological</topic><topic>Biomedical imaging</topic><topic>Cell motion</topic><topic>Criteria</topic><topic>Learning</topic><topic>Matching</topic><topic>Motion analysis</topic><topic>Rank-based learning</topic><topic>Similarity</topic><topic>Tasks</topic><topic>Trajectories</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fasciano, Thomas</creatorcontrib><creatorcontrib>Souvenir, Richard</creatorcontrib><creatorcontrib>Shin, Min C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fasciano, Thomas</au><au>Souvenir, Richard</au><au>Shin, Min C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to rank biological motion trajectories</atitle><jtitle>Image and vision computing</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>31</volume><issue>6-7</issue><spage>502</spage><epage>510</epage><pages>502-510</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>Many feature transforms have been proposed for the problem of trajectory matching. These methods, which are often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because similar biological behavior often results in dissimilar trajectory shape. Additionally, the criteria used for similarity may differ depending on the user's particular interest or the specific query behavior. We present a rank-based distance metric learning method that combines user input and a new set of biologically-motivated features for biological trajectory matching. We show that, with a small amount of user effort, this method outperforms existing trajectory methods. On an information retrieval task using real world data, our method outperforms recent, related methods by ~9%.
To learn a distance metric for trajectory matching, a user selects a query trajectory (left) and provides feedback by determining which from a pair of trajectories (middle) is more similar to the query. Our algorithm uses this feedback and learns a set of feature weights to be used for trajectory matching (right). [Display omitted]
► Biologically-motivated features for cell trajectory matching. ► Leverages user input for semi-supervised distance metric learning. ► Outperforms shape-based approaches on real-world cell trajectory retrieval problem.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.imavis.2012.07.010</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-8856 |
ispartof | Image and vision computing, 2013-06, Vol.31 (6-7), p.502-510 |
issn | 0262-8856 1872-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671593625 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Biological Biomedical imaging Cell motion Criteria Learning Matching Motion analysis Rank-based learning Similarity Tasks Trajectories Transforms |
title | Learning to rank biological motion trajectories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20rank%20biological%20motion%20trajectories&rft.jtitle=Image%20and%20vision%20computing&rft.au=Fasciano,%20Thomas&rft.date=2013-06-01&rft.volume=31&rft.issue=6-7&rft.spage=502&rft.epage=510&rft.pages=502-510&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/j.imavis.2012.07.010&rft_dat=%3Cproquest_cross%3E1372644431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372644431&rft_id=info:pmid/&rft_els_id=S0262885612001151&rfr_iscdi=true |