A New Hybrid Estimator for the Generalized Weibull Family Distribution
The method of moments (MOM) is suffered from a trouble in their corresponding estimators for the bounded distributions, which is nonfeasibility. In the sense that the supports inferred from the estimates fail to contain all observations. In this paper, we introduce a new hybrid estimator based on th...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics research 2014-09, Vol.6 (3), p.114-114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 3 |
container_start_page | 114 |
container_title | Journal of mathematics research |
container_volume | 6 |
creator | Riad, Hesham M. Hashish, Ahmed M. |
description | The method of moments (MOM) is suffered from a trouble in their corresponding estimators for the bounded distributions, which is nonfeasibility. In the sense that the supports inferred from the estimates fail to contain all observations. In this paper, we introduce a new hybrid estimator based on the MOM estimators for the generalized Weibull family distribution (GWFD). Monte Carlo simulation is performed to compare the hybrid moments estimators with the associated MOM estimators in terms of bias and root mean square error. The proposed hybrid estimator is easy to use, always feasible and it has more desirable properties than the associated MOM estimators. |
doi_str_mv | 10.5539/jmr.v6n3p114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671593317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671593317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707-89c484c67bd8a971164265a7e6ecbaecf019901290ae57ace560b8b4b8196c273</originalsourceid><addsrcrecordid>eNo1kE1LAzEQhoMoWKs3f0COHtya6W6SzbHUfghFLwWPIUlnMSW7W5Ot0v56t9QeXuZleBiYh5BHYCPOc_WyrePoRzT5DqC4IgNQIDJVMnV96VLxW3KX0pYxIUTBB2Q-oe_4S5cHG_2GzlLna9O1kVZ9ui-kC2wwmuCPuKGf6O0-BDo3tQ8H-upTF_tN59vmntxUJiR8-J9Dsp7P1tNltvpYvE0nq8xJJrNSuaIsnJB2UxolAUQxFtxIFOisQVcxUIrBWDGDXBqHXDBb2sKWoIQby3xIns5nd7H93mPqdO2TwxBMg-0-aRASuMpzOKHPZ9TFNqWIld7F_rd40MD0yZbubemLrfwPPEZeGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671593317</pqid></control><display><type>article</type><title>A New Hybrid Estimator for the Generalized Weibull Family Distribution</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Riad, Hesham M. ; Hashish, Ahmed M.</creator><creatorcontrib>Riad, Hesham M. ; Hashish, Ahmed M.</creatorcontrib><description>The method of moments (MOM) is suffered from a trouble in their corresponding estimators for the bounded distributions, which is nonfeasibility. In the sense that the supports inferred from the estimates fail to contain all observations. In this paper, we introduce a new hybrid estimator based on the MOM estimators for the generalized Weibull family distribution (GWFD). Monte Carlo simulation is performed to compare the hybrid moments estimators with the associated MOM estimators in terms of bias and root mean square error. The proposed hybrid estimator is easy to use, always feasible and it has more desirable properties than the associated MOM estimators.</description><identifier>ISSN: 1916-9795</identifier><identifier>EISSN: 1916-9809</identifier><identifier>DOI: 10.5539/jmr.v6n3p114</identifier><language>eng</language><subject>Austenitic stainless steels ; Computer simulation ; Estimates ; Estimators ; Mathematical analysis ; Mean square values ; Monte Carlo methods ; Roots</subject><ispartof>Journal of mathematics research, 2014-09, Vol.6 (3), p.114-114</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Riad, Hesham M.</creatorcontrib><creatorcontrib>Hashish, Ahmed M.</creatorcontrib><title>A New Hybrid Estimator for the Generalized Weibull Family Distribution</title><title>Journal of mathematics research</title><description>The method of moments (MOM) is suffered from a trouble in their corresponding estimators for the bounded distributions, which is nonfeasibility. In the sense that the supports inferred from the estimates fail to contain all observations. In this paper, we introduce a new hybrid estimator based on the MOM estimators for the generalized Weibull family distribution (GWFD). Monte Carlo simulation is performed to compare the hybrid moments estimators with the associated MOM estimators in terms of bias and root mean square error. The proposed hybrid estimator is easy to use, always feasible and it has more desirable properties than the associated MOM estimators.</description><subject>Austenitic stainless steels</subject><subject>Computer simulation</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Mathematical analysis</subject><subject>Mean square values</subject><subject>Monte Carlo methods</subject><subject>Roots</subject><issn>1916-9795</issn><issn>1916-9809</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEQhoMoWKs3f0COHtya6W6SzbHUfghFLwWPIUlnMSW7W5Ot0v56t9QeXuZleBiYh5BHYCPOc_WyrePoRzT5DqC4IgNQIDJVMnV96VLxW3KX0pYxIUTBB2Q-oe_4S5cHG_2GzlLna9O1kVZ9ui-kC2wwmuCPuKGf6O0-BDo3tQ8H-upTF_tN59vmntxUJiR8-J9Dsp7P1tNltvpYvE0nq8xJJrNSuaIsnJB2UxolAUQxFtxIFOisQVcxUIrBWDGDXBqHXDBb2sKWoIQby3xIns5nd7H93mPqdO2TwxBMg-0-aRASuMpzOKHPZ9TFNqWIld7F_rd40MD0yZbubemLrfwPPEZeGg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Riad, Hesham M.</creator><creator>Hashish, Ahmed M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>A New Hybrid Estimator for the Generalized Weibull Family Distribution</title><author>Riad, Hesham M. ; Hashish, Ahmed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707-89c484c67bd8a971164265a7e6ecbaecf019901290ae57ace560b8b4b8196c273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Austenitic stainless steels</topic><topic>Computer simulation</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Mathematical analysis</topic><topic>Mean square values</topic><topic>Monte Carlo methods</topic><topic>Roots</topic><toplevel>online_resources</toplevel><creatorcontrib>Riad, Hesham M.</creatorcontrib><creatorcontrib>Hashish, Ahmed M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of mathematics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riad, Hesham M.</au><au>Hashish, Ahmed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Hybrid Estimator for the Generalized Weibull Family Distribution</atitle><jtitle>Journal of mathematics research</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>6</volume><issue>3</issue><spage>114</spage><epage>114</epage><pages>114-114</pages><issn>1916-9795</issn><eissn>1916-9809</eissn><abstract>The method of moments (MOM) is suffered from a trouble in their corresponding estimators for the bounded distributions, which is nonfeasibility. In the sense that the supports inferred from the estimates fail to contain all observations. In this paper, we introduce a new hybrid estimator based on the MOM estimators for the generalized Weibull family distribution (GWFD). Monte Carlo simulation is performed to compare the hybrid moments estimators with the associated MOM estimators in terms of bias and root mean square error. The proposed hybrid estimator is easy to use, always feasible and it has more desirable properties than the associated MOM estimators.</abstract><doi>10.5539/jmr.v6n3p114</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1916-9795 |
ispartof | Journal of mathematics research, 2014-09, Vol.6 (3), p.114-114 |
issn | 1916-9795 1916-9809 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671593317 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals |
subjects | Austenitic stainless steels Computer simulation Estimates Estimators Mathematical analysis Mean square values Monte Carlo methods Roots |
title | A New Hybrid Estimator for the Generalized Weibull Family Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Hybrid%20Estimator%20for%20the%20Generalized%20Weibull%20Family%20Distribution&rft.jtitle=Journal%20of%20mathematics%20research&rft.au=Riad,%20Hesham%20M.&rft.date=2014-09-01&rft.volume=6&rft.issue=3&rft.spage=114&rft.epage=114&rft.pages=114-114&rft.issn=1916-9795&rft.eissn=1916-9809&rft_id=info:doi/10.5539/jmr.v6n3p114&rft_dat=%3Cproquest_cross%3E1671593317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671593317&rft_id=info:pmid/&rfr_iscdi=true |