Molecular insight into γ–γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC)

γ-tubulin is essential for the nucleation and organization of mitotic microtubules in dividing cells. It is localized at the microtubule organizing centers and mitotic spindle fibres. The most well accepted hypothesis for the initiation of microtubule polymerization is that α/β-tubulin dimers add on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer-aided molecular design 2014-09, Vol.28 (9), p.961-972
Hauptverfasser: Suri, Charu, Hendrickson, Triscia W., Joshi, Harish C., Naik, Pradeep Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 972
container_issue 9
container_start_page 961
container_title Journal of computer-aided molecular design
container_volume 28
creator Suri, Charu
Hendrickson, Triscia W.
Joshi, Harish C.
Naik, Pradeep Kumar
description γ-tubulin is essential for the nucleation and organization of mitotic microtubules in dividing cells. It is localized at the microtubule organizing centers and mitotic spindle fibres. The most well accepted hypothesis for the initiation of microtubule polymerization is that α/β-tubulin dimers add onto a γ-tubulin ring complex (γTuRC), in which adjacent γ-tubulin subunits bind to the underlying non-tubulin components of the γTuRC. This template thus determines the resulting microtubule lattice. In this study we use molecular modelling and molecular dynamics simulations, combined with computational MM-PBSA/MM-GBSA methods, to determine the extent of the lateral atomic interaction between two adjacent γ-tubulins within the γTuRC. To do this we simulated a γ–γ homodimer for 10 ns and calculated the ensemble average of binding free energies of −107.76 kcal/mol by the MM-PBSA method and of −87.12 kcal/mol by the MM-GBSA method. These highly favourable binding free energy values imply robust lateral interactions between adjacent γ-tubulin subunits in addition to their end-interactions longitudinally with other proteins of γTuRC. Although the functional reconstitution of γ-TuRC subunits and their stepwise in vitro assembly from purified components is not yet feasible, we nevertheless wanted to recognize hotspot amino acids responsible for key γ–γ interactions. Our free energy decomposition data from converting a compendium of amino acid residues identified an array of hotspot amino acids. A subset of such mutants can be expressed in vivo in living yeast. Because γTuRC is important for the growth of yeast, we could test whether this subset of the hotspot mutations support growth of yeast. Consistent with our model, γ-tubulin mutants that fall into our identified hotspot do not support yeast growth.
doi_str_mv 10.1007/s10822-014-9779-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671592780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671592780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-732703b8498b4d3a3c0d7afa917f7a0a8ae8f8925171b4ffe042c3dfe9a331523</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EoqWwACYoQxgYnu2kjoeo4icVIaEiMbOc1GlTuUmxHQEz9sBSuo8ugpXgKC1DRndwz7vSOwidErgkAPzKEUgpxUBiLDgXmO6hPkk4w7FIyD7qg6CAh0n82kNHzi0g3IghHKIeTYAR4MM-mj_WRueNUTYqK1fO5j6kr6PN-ufre7OOfJM1pqwio7y2yrRlyNyXdeWi99LPQ-fnOvB4h9qymkV5vVwZ_RGdh2LSPI8ujtFBoYzTJ9scoJfbm8noHo-f7h5G12OcM8495oxyYFkaizSLp0yxHKZcFUoQXnAFKlU6LVJBE8JJFheFhpjmbFpooRgjCWUDdN7trmz91mjn5bJ0uTZGVbpunCRDThJBeQoBJR2a29o5qwu5suVS2U9JQLaCZSdYBsGyFSzb-bPtfJMt9fTvYmc0ALQD3KoVoa1c1I2twsv_rP4CVLqKhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671592780</pqid></control><display><type>article</type><title>Molecular insight into γ–γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC)</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Suri, Charu ; Hendrickson, Triscia W. ; Joshi, Harish C. ; Naik, Pradeep Kumar</creator><creatorcontrib>Suri, Charu ; Hendrickson, Triscia W. ; Joshi, Harish C. ; Naik, Pradeep Kumar</creatorcontrib><description>γ-tubulin is essential for the nucleation and organization of mitotic microtubules in dividing cells. It is localized at the microtubule organizing centers and mitotic spindle fibres. The most well accepted hypothesis for the initiation of microtubule polymerization is that α/β-tubulin dimers add onto a γ-tubulin ring complex (γTuRC), in which adjacent γ-tubulin subunits bind to the underlying non-tubulin components of the γTuRC. This template thus determines the resulting microtubule lattice. In this study we use molecular modelling and molecular dynamics simulations, combined with computational MM-PBSA/MM-GBSA methods, to determine the extent of the lateral atomic interaction between two adjacent γ-tubulins within the γTuRC. To do this we simulated a γ–γ homodimer for 10 ns and calculated the ensemble average of binding free energies of −107.76 kcal/mol by the MM-PBSA method and of −87.12 kcal/mol by the MM-GBSA method. These highly favourable binding free energy values imply robust lateral interactions between adjacent γ-tubulin subunits in addition to their end-interactions longitudinally with other proteins of γTuRC. Although the functional reconstitution of γ-TuRC subunits and their stepwise in vitro assembly from purified components is not yet feasible, we nevertheless wanted to recognize hotspot amino acids responsible for key γ–γ interactions. Our free energy decomposition data from converting a compendium of amino acid residues identified an array of hotspot amino acids. A subset of such mutants can be expressed in vivo in living yeast. Because γTuRC is important for the growth of yeast, we could test whether this subset of the hotspot mutations support growth of yeast. Consistent with our model, γ-tubulin mutants that fall into our identified hotspot do not support yeast growth.</description><identifier>ISSN: 0920-654X</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1007/s10822-014-9779-2</identifier><identifier>PMID: 25031076</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Amino Acid Substitution ; Amino acids ; Animal Anatomy ; Binding energy ; Chemistry ; Chemistry and Materials Science ; Computer Applications in Chemistry ; Computer simulation ; Free energy ; Histology ; Hot spots ; Humans ; Mathematical models ; Molecular Dynamics Simulation ; Morphology ; Physical Chemistry ; Protein Binding ; Protein Conformation ; Protein Interaction Maps ; Protein Multimerization ; Protein Stability ; Recognition ; Schizosaccharomyces - genetics ; Thermodynamics ; Tubulin - chemistry ; Tubulin - genetics ; Tubulin - metabolism ; Yeast</subject><ispartof>Journal of computer-aided molecular design, 2014-09, Vol.28 (9), p.961-972</ispartof><rights>Springer International Publishing Switzerland 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-732703b8498b4d3a3c0d7afa917f7a0a8ae8f8925171b4ffe042c3dfe9a331523</citedby><cites>FETCH-LOGICAL-c377t-732703b8498b4d3a3c0d7afa917f7a0a8ae8f8925171b4ffe042c3dfe9a331523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10822-014-9779-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10822-014-9779-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25031076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suri, Charu</creatorcontrib><creatorcontrib>Hendrickson, Triscia W.</creatorcontrib><creatorcontrib>Joshi, Harish C.</creatorcontrib><creatorcontrib>Naik, Pradeep Kumar</creatorcontrib><title>Molecular insight into γ–γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC)</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><addtitle>J Comput Aided Mol Des</addtitle><description>γ-tubulin is essential for the nucleation and organization of mitotic microtubules in dividing cells. It is localized at the microtubule organizing centers and mitotic spindle fibres. The most well accepted hypothesis for the initiation of microtubule polymerization is that α/β-tubulin dimers add onto a γ-tubulin ring complex (γTuRC), in which adjacent γ-tubulin subunits bind to the underlying non-tubulin components of the γTuRC. This template thus determines the resulting microtubule lattice. In this study we use molecular modelling and molecular dynamics simulations, combined with computational MM-PBSA/MM-GBSA methods, to determine the extent of the lateral atomic interaction between two adjacent γ-tubulins within the γTuRC. To do this we simulated a γ–γ homodimer for 10 ns and calculated the ensemble average of binding free energies of −107.76 kcal/mol by the MM-PBSA method and of −87.12 kcal/mol by the MM-GBSA method. These highly favourable binding free energy values imply robust lateral interactions between adjacent γ-tubulin subunits in addition to their end-interactions longitudinally with other proteins of γTuRC. Although the functional reconstitution of γ-TuRC subunits and their stepwise in vitro assembly from purified components is not yet feasible, we nevertheless wanted to recognize hotspot amino acids responsible for key γ–γ interactions. Our free energy decomposition data from converting a compendium of amino acid residues identified an array of hotspot amino acids. A subset of such mutants can be expressed in vivo in living yeast. Because γTuRC is important for the growth of yeast, we could test whether this subset of the hotspot mutations support growth of yeast. Consistent with our model, γ-tubulin mutants that fall into our identified hotspot do not support yeast growth.</description><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Animal Anatomy</subject><subject>Binding energy</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Applications in Chemistry</subject><subject>Computer simulation</subject><subject>Free energy</subject><subject>Histology</subject><subject>Hot spots</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Molecular Dynamics Simulation</subject><subject>Morphology</subject><subject>Physical Chemistry</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Interaction Maps</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Recognition</subject><subject>Schizosaccharomyces - genetics</subject><subject>Thermodynamics</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><subject>Yeast</subject><issn>0920-654X</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtOwzAURS0EoqWwACYoQxgYnu2kjoeo4icVIaEiMbOc1GlTuUmxHQEz9sBSuo8ugpXgKC1DRndwz7vSOwidErgkAPzKEUgpxUBiLDgXmO6hPkk4w7FIyD7qg6CAh0n82kNHzi0g3IghHKIeTYAR4MM-mj_WRueNUTYqK1fO5j6kr6PN-ufre7OOfJM1pqwio7y2yrRlyNyXdeWi99LPQ-fnOvB4h9qymkV5vVwZ_RGdh2LSPI8ujtFBoYzTJ9scoJfbm8noHo-f7h5G12OcM8495oxyYFkaizSLp0yxHKZcFUoQXnAFKlU6LVJBE8JJFheFhpjmbFpooRgjCWUDdN7trmz91mjn5bJ0uTZGVbpunCRDThJBeQoBJR2a29o5qwu5suVS2U9JQLaCZSdYBsGyFSzb-bPtfJMt9fTvYmc0ALQD3KoVoa1c1I2twsv_rP4CVLqKhA</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Suri, Charu</creator><creator>Hendrickson, Triscia W.</creator><creator>Joshi, Harish C.</creator><creator>Naik, Pradeep Kumar</creator><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Molecular insight into γ–γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC)</title><author>Suri, Charu ; Hendrickson, Triscia W. ; Joshi, Harish C. ; Naik, Pradeep Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-732703b8498b4d3a3c0d7afa917f7a0a8ae8f8925171b4ffe042c3dfe9a331523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Animal Anatomy</topic><topic>Binding energy</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Applications in Chemistry</topic><topic>Computer simulation</topic><topic>Free energy</topic><topic>Histology</topic><topic>Hot spots</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Molecular Dynamics Simulation</topic><topic>Morphology</topic><topic>Physical Chemistry</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Interaction Maps</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Recognition</topic><topic>Schizosaccharomyces - genetics</topic><topic>Thermodynamics</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suri, Charu</creatorcontrib><creatorcontrib>Hendrickson, Triscia W.</creatorcontrib><creatorcontrib>Joshi, Harish C.</creatorcontrib><creatorcontrib>Naik, Pradeep Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suri, Charu</au><au>Hendrickson, Triscia W.</au><au>Joshi, Harish C.</au><au>Naik, Pradeep Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular insight into γ–γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC)</atitle><jtitle>Journal of computer-aided molecular design</jtitle><stitle>J Comput Aided Mol Des</stitle><addtitle>J Comput Aided Mol Des</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>28</volume><issue>9</issue><spage>961</spage><epage>972</epage><pages>961-972</pages><issn>0920-654X</issn><eissn>1573-4951</eissn><abstract>γ-tubulin is essential for the nucleation and organization of mitotic microtubules in dividing cells. It is localized at the microtubule organizing centers and mitotic spindle fibres. The most well accepted hypothesis for the initiation of microtubule polymerization is that α/β-tubulin dimers add onto a γ-tubulin ring complex (γTuRC), in which adjacent γ-tubulin subunits bind to the underlying non-tubulin components of the γTuRC. This template thus determines the resulting microtubule lattice. In this study we use molecular modelling and molecular dynamics simulations, combined with computational MM-PBSA/MM-GBSA methods, to determine the extent of the lateral atomic interaction between two adjacent γ-tubulins within the γTuRC. To do this we simulated a γ–γ homodimer for 10 ns and calculated the ensemble average of binding free energies of −107.76 kcal/mol by the MM-PBSA method and of −87.12 kcal/mol by the MM-GBSA method. These highly favourable binding free energy values imply robust lateral interactions between adjacent γ-tubulin subunits in addition to their end-interactions longitudinally with other proteins of γTuRC. Although the functional reconstitution of γ-TuRC subunits and their stepwise in vitro assembly from purified components is not yet feasible, we nevertheless wanted to recognize hotspot amino acids responsible for key γ–γ interactions. Our free energy decomposition data from converting a compendium of amino acid residues identified an array of hotspot amino acids. A subset of such mutants can be expressed in vivo in living yeast. Because γTuRC is important for the growth of yeast, we could test whether this subset of the hotspot mutations support growth of yeast. Consistent with our model, γ-tubulin mutants that fall into our identified hotspot do not support yeast growth.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>25031076</pmid><doi>10.1007/s10822-014-9779-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-654X
ispartof Journal of computer-aided molecular design, 2014-09, Vol.28 (9), p.961-972
issn 0920-654X
1573-4951
language eng
recordid cdi_proquest_miscellaneous_1671592780
source MEDLINE; SpringerLink Journals
subjects Amino Acid Substitution
Amino acids
Animal Anatomy
Binding energy
Chemistry
Chemistry and Materials Science
Computer Applications in Chemistry
Computer simulation
Free energy
Histology
Hot spots
Humans
Mathematical models
Molecular Dynamics Simulation
Morphology
Physical Chemistry
Protein Binding
Protein Conformation
Protein Interaction Maps
Protein Multimerization
Protein Stability
Recognition
Schizosaccharomyces - genetics
Thermodynamics
Tubulin - chemistry
Tubulin - genetics
Tubulin - metabolism
Yeast
title Molecular insight into γ–γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20insight%20into%20%CE%B3%E2%80%93%CE%B3%20tubulin%20lateral%20interactions%20within%20the%20%CE%B3-tubulin%20ring%20complex%20(%CE%B3-TuRC)&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Suri,%20Charu&rft.date=2014-09-01&rft.volume=28&rft.issue=9&rft.spage=961&rft.epage=972&rft.pages=961-972&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1007/s10822-014-9779-2&rft_dat=%3Cproquest_cross%3E1671592780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671592780&rft_id=info:pmid/25031076&rfr_iscdi=true