Dispersion inversion of electromagnetic pulse propagation within freezing and thawing soil waveguides
Freeze and thaw processes are important components in characterizing glacial, periglacial and frozen ground environments, and hence the response of cryospheric regions to climate change. High‐frequency ground‐penetrating radar is particularly well suited for monitoring the freezing and thawing proce...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2009-09, Vol.36 (18), p.np-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | np |
container_title | Geophysical research letters |
container_volume | 36 |
creator | van der Kruk, J. Steelman, C. M. Endres, A. L. Vereecken, H. |
description | Freeze and thaw processes are important components in characterizing glacial, periglacial and frozen ground environments, and hence the response of cryospheric regions to climate change. High‐frequency ground‐penetrating radar is particularly well suited for monitoring the freezing and thawing processes within the shallow subsurface (i.e., < 1 m depth) due to its non‐invasive nature and its sensitivity to the liquid water component in soil. The freezing of moist soil and thawing of frozen soil induce leaky and low‐velocity waveguides, respectively. Within these waveguide layers, the internally reflected radar energy produces interfering multiples that appear as a package of dispersed waves. Here, we present a new method for characterizing very shallow freeze and thaw processes, in which the waveguide properties are obtained by inverting the observed dispersion curves. This new method can non‐invasively monitor freezing and thawing processes in a wide range of glacial, periglacial and frozen ground studies. |
doi_str_mv | 10.1029/2009GL039581 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671592616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2257298991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5003-470589ad1b00d76678c1a2d2afac7f40e3ed0f6e0a5dfc0031517d23af79c04f3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EEkvhxg-IkJA4EBg7jh0f0QLblhUIVMTRGpzx1iWbpHbSpfx6vNpVhTjAyU_y955m3jD2lMMrDsK8FgBmtYbK1A2_xxbcSFk2APo-W-SfrIVWD9mjlK4AoIKKLxi9DWmkmMLQF6G_OarBF9SRm-KwxU1PU3DFOHeJijEOI25w2kO7MF2GvvCR6FfoNwX2bTFd4m6v0xC6Yoc3tJlDS-kxe-Ax-58c3xP29f27i-Vpuf60Olu-WZdY54FKqaFuDLb8O0CrldKN4yhagR6d9hKooha8IsC69S47eM11Kyr02jiQvjphLw65ec7rmdJktyE56jrsaZiT5Urz2gjF1f_RWkiZG9Qmo8_-Qq-GOfZ5EdtIIwTPjWfo5QFycUgpkrdjDFuMt5aD3V_H_nmdjD8_ZmJy2PmIvQvpziNEbkJInTlx4Haho9t_ZtrVl7VQQlXZVB5MIU30886E8YdVutK1_fZxZc8_wOcLo87tsvoNF52tFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849221039</pqid></control><display><type>article</type><title>Dispersion inversion of electromagnetic pulse propagation within freezing and thawing soil waveguides</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van der Kruk, J. ; Steelman, C. M. ; Endres, A. L. ; Vereecken, H.</creator><creatorcontrib>van der Kruk, J. ; Steelman, C. M. ; Endres, A. L. ; Vereecken, H.</creatorcontrib><description>Freeze and thaw processes are important components in characterizing glacial, periglacial and frozen ground environments, and hence the response of cryospheric regions to climate change. High‐frequency ground‐penetrating radar is particularly well suited for monitoring the freezing and thawing processes within the shallow subsurface (i.e., < 1 m depth) due to its non‐invasive nature and its sensitivity to the liquid water component in soil. The freezing of moist soil and thawing of frozen soil induce leaky and low‐velocity waveguides, respectively. Within these waveguide layers, the internally reflected radar energy produces interfering multiples that appear as a package of dispersed waves. Here, we present a new method for characterizing very shallow freeze and thaw processes, in which the waveguide properties are obtained by inverting the observed dispersion curves. This new method can non‐invasively monitor freezing and thawing processes in a wide range of glacial, periglacial and frozen ground studies.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2009GL039581</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Climate change ; Cryosphere ; Dispersions ; Earth sciences ; Earth, ocean, space ; Electromagnetics ; Exact sciences and technology ; Freezing ; Frozen ground ; Geobiology ; Geophysics ; GPR ; Hydrology ; inversion ; Melting ; Radar ; Soil (material) ; Thawing ; Wave propagation ; waveguide ; Waveguides</subject><ispartof>Geophysical research letters, 2009-09, Vol.36 (18), p.np-n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright 2009 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5003-470589ad1b00d76678c1a2d2afac7f40e3ed0f6e0a5dfc0031517d23af79c04f3</citedby><cites>FETCH-LOGICAL-a5003-470589ad1b00d76678c1a2d2afac7f40e3ed0f6e0a5dfc0031517d23af79c04f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GL039581$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GL039581$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22058247$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Kruk, J.</creatorcontrib><creatorcontrib>Steelman, C. M.</creatorcontrib><creatorcontrib>Endres, A. L.</creatorcontrib><creatorcontrib>Vereecken, H.</creatorcontrib><title>Dispersion inversion of electromagnetic pulse propagation within freezing and thawing soil waveguides</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Freeze and thaw processes are important components in characterizing glacial, periglacial and frozen ground environments, and hence the response of cryospheric regions to climate change. High‐frequency ground‐penetrating radar is particularly well suited for monitoring the freezing and thawing processes within the shallow subsurface (i.e., < 1 m depth) due to its non‐invasive nature and its sensitivity to the liquid water component in soil. The freezing of moist soil and thawing of frozen soil induce leaky and low‐velocity waveguides, respectively. Within these waveguide layers, the internally reflected radar energy produces interfering multiples that appear as a package of dispersed waves. Here, we present a new method for characterizing very shallow freeze and thaw processes, in which the waveguide properties are obtained by inverting the observed dispersion curves. This new method can non‐invasively monitor freezing and thawing processes in a wide range of glacial, periglacial and frozen ground studies.</description><subject>Climate change</subject><subject>Cryosphere</subject><subject>Dispersions</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Electromagnetics</subject><subject>Exact sciences and technology</subject><subject>Freezing</subject><subject>Frozen ground</subject><subject>Geobiology</subject><subject>Geophysics</subject><subject>GPR</subject><subject>Hydrology</subject><subject>inversion</subject><subject>Melting</subject><subject>Radar</subject><subject>Soil (material)</subject><subject>Thawing</subject><subject>Wave propagation</subject><subject>waveguide</subject><subject>Waveguides</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUFv1DAQhS0EEkvhxg-IkJA4EBg7jh0f0QLblhUIVMTRGpzx1iWbpHbSpfx6vNpVhTjAyU_y955m3jD2lMMrDsK8FgBmtYbK1A2_xxbcSFk2APo-W-SfrIVWD9mjlK4AoIKKLxi9DWmkmMLQF6G_OarBF9SRm-KwxU1PU3DFOHeJijEOI25w2kO7MF2GvvCR6FfoNwX2bTFd4m6v0xC6Yoc3tJlDS-kxe-Ax-58c3xP29f27i-Vpuf60Olu-WZdY54FKqaFuDLb8O0CrldKN4yhagR6d9hKooha8IsC69S47eM11Kyr02jiQvjphLw65ec7rmdJktyE56jrsaZiT5Urz2gjF1f_RWkiZG9Qmo8_-Qq-GOfZ5EdtIIwTPjWfo5QFycUgpkrdjDFuMt5aD3V_H_nmdjD8_ZmJy2PmIvQvpziNEbkJInTlx4Haho9t_ZtrVl7VQQlXZVB5MIU30886E8YdVutK1_fZxZc8_wOcLo87tsvoNF52tFA</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>van der Kruk, J.</creator><creator>Steelman, C. M.</creator><creator>Endres, A. L.</creator><creator>Vereecken, H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200909</creationdate><title>Dispersion inversion of electromagnetic pulse propagation within freezing and thawing soil waveguides</title><author>van der Kruk, J. ; Steelman, C. M. ; Endres, A. L. ; Vereecken, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5003-470589ad1b00d76678c1a2d2afac7f40e3ed0f6e0a5dfc0031517d23af79c04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Climate change</topic><topic>Cryosphere</topic><topic>Dispersions</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Electromagnetics</topic><topic>Exact sciences and technology</topic><topic>Freezing</topic><topic>Frozen ground</topic><topic>Geobiology</topic><topic>Geophysics</topic><topic>GPR</topic><topic>Hydrology</topic><topic>inversion</topic><topic>Melting</topic><topic>Radar</topic><topic>Soil (material)</topic><topic>Thawing</topic><topic>Wave propagation</topic><topic>waveguide</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Kruk, J.</creatorcontrib><creatorcontrib>Steelman, C. M.</creatorcontrib><creatorcontrib>Endres, A. L.</creatorcontrib><creatorcontrib>Vereecken, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Kruk, J.</au><au>Steelman, C. M.</au><au>Endres, A. L.</au><au>Vereecken, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion inversion of electromagnetic pulse propagation within freezing and thawing soil waveguides</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2009-09</date><risdate>2009</risdate><volume>36</volume><issue>18</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>Freeze and thaw processes are important components in characterizing glacial, periglacial and frozen ground environments, and hence the response of cryospheric regions to climate change. High‐frequency ground‐penetrating radar is particularly well suited for monitoring the freezing and thawing processes within the shallow subsurface (i.e., < 1 m depth) due to its non‐invasive nature and its sensitivity to the liquid water component in soil. The freezing of moist soil and thawing of frozen soil induce leaky and low‐velocity waveguides, respectively. Within these waveguide layers, the internally reflected radar energy produces interfering multiples that appear as a package of dispersed waves. Here, we present a new method for characterizing very shallow freeze and thaw processes, in which the waveguide properties are obtained by inverting the observed dispersion curves. This new method can non‐invasively monitor freezing and thawing processes in a wide range of glacial, periglacial and frozen ground studies.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GL039581</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2009-09, Vol.36 (18), p.np-n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671592616 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Climate change Cryosphere Dispersions Earth sciences Earth, ocean, space Electromagnetics Exact sciences and technology Freezing Frozen ground Geobiology Geophysics GPR Hydrology inversion Melting Radar Soil (material) Thawing Wave propagation waveguide Waveguides |
title | Dispersion inversion of electromagnetic pulse propagation within freezing and thawing soil waveguides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20inversion%20of%20electromagnetic%20pulse%20propagation%20within%20freezing%20and%20thawing%20soil%20waveguides&rft.jtitle=Geophysical%20research%20letters&rft.au=van%20der%20Kruk,%20J.&rft.date=2009-09&rft.volume=36&rft.issue=18&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2009GL039581&rft_dat=%3Cproquest_cross%3E2257298991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849221039&rft_id=info:pmid/&rfr_iscdi=true |