Metal nanogrids, nanowires, and nanofibers for transparent electrodes
Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2011-10, Vol.36 (10), p.760-765 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 765 |
---|---|
container_issue | 10 |
container_start_page | 760 |
container_title | MRS bulletin |
container_volume | 36 |
creator | Hu, Liangbing Wu, Hui Cui, Yi |
description | Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications. |
doi_str_mv | 10.1557/mrs.2011.234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671592382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2011_234</cupid><sourcerecordid>2927855733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-36ea54c6cfcdc51b41eb0cd2c469706d20c2a694b5a665b1d10af6beff26ea803</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWKs7f8CgCC46Y96TWUqpD6i40XXIZG7KlHnUZIr4700fKAjFVW7Id849nCB0SXBGhMjvWh8yignJKONHaEQKplLCqThGI6wUS3NZ8FN0FsISYyJwLkZo9gKDaZLOdP3C11WYbMfP2kMcTVdtr64uwYfE9T4ZvOnCynjohgQasIPvKwjn6MSZJsDF_hyj94fZ2_Qpnb8-Pk_v56nlhRxSJsEIbqV1trKClJxAiW1FLZdFjmVFsaUmZiyFkVKUpCLYOFmCczQqFWZjdLvzXfn-Yw1h0G0dLDSN6aBfB01kTkRBmaIRvfqDLvu172I6rYqCKkaYiND1IYgWNFexVMYiNdlR1vcheHB65evW-C9NsN4Ur2PxelO8jsVH_GZvaoI1jYuN2Tr8aCjPc8k5iVy640J86hbgf5cf8M32MUxbxr9awD-Cb3LwoLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899283135</pqid></control><display><type>article</type><title>Metal nanogrids, nanowires, and nanofibers for transparent electrodes</title><source>Springer Nature - Complete Springer Journals</source><creator>Hu, Liangbing ; Wu, Hui ; Cui, Yi</creator><creatorcontrib>Hu, Liangbing ; Wu, Hui ; Cui, Yi</creatorcontrib><description>Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2011.234</identifier><identifier>CODEN: MRSBEA</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Characterization and Evaluation of Materials ; Chemistry ; Conductivity ; Electrochemistry ; Electrodes ; Electrodes: preparations and properties ; Electrons ; Energy Materials ; Exact sciences and technology ; General and physical chemistry ; Gold ; Grain boundaries ; Graphene ; Interactive computer systems ; Low cost ; Materials Engineering ; Materials Science ; Metal films ; Metals ; Nanofibers ; Nanostructure ; Nanotechnology ; Nanowires ; Optoelectronics ; Performance evaluation ; Photovoltaic cells ; Room temperature ; Silver ; Solar cells ; Solution-Processed Transparent Electrodes ; Thin films</subject><ispartof>MRS bulletin, 2011-10, Vol.36 (10), p.760-765</ispartof><rights>Copyright © Materials Research Society 2011</rights><rights>The Materials Research Society 2011</rights><rights>2015 INIST-CNRS</rights><rights>The Materials Research Society 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-36ea54c6cfcdc51b41eb0cd2c469706d20c2a694b5a665b1d10af6beff26ea803</citedby><cites>FETCH-LOGICAL-c496t-36ea54c6cfcdc51b41eb0cd2c469706d20c2a694b5a665b1d10af6beff26ea803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2011.234$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/mrs.2011.234$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24776441$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Liangbing</creatorcontrib><creatorcontrib>Wu, Hui</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><title>Metal nanogrids, nanowires, and nanofibers for transparent electrodes</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><description>Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications.</description><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Conductivity</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrodes: preparations and properties</subject><subject>Electrons</subject><subject>Energy Materials</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gold</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Interactive computer systems</subject><subject>Low cost</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metal films</subject><subject>Metals</subject><subject>Nanofibers</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optoelectronics</subject><subject>Performance evaluation</subject><subject>Photovoltaic cells</subject><subject>Room temperature</subject><subject>Silver</subject><subject>Solar cells</subject><subject>Solution-Processed Transparent Electrodes</subject><subject>Thin films</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkUtLAzEUhYMoWKs7f8CgCC46Y96TWUqpD6i40XXIZG7KlHnUZIr4700fKAjFVW7Id849nCB0SXBGhMjvWh8yignJKONHaEQKplLCqThGI6wUS3NZ8FN0FsISYyJwLkZo9gKDaZLOdP3C11WYbMfP2kMcTVdtr64uwYfE9T4ZvOnCynjohgQasIPvKwjn6MSZJsDF_hyj94fZ2_Qpnb8-Pk_v56nlhRxSJsEIbqV1trKClJxAiW1FLZdFjmVFsaUmZiyFkVKUpCLYOFmCczQqFWZjdLvzXfn-Yw1h0G0dLDSN6aBfB01kTkRBmaIRvfqDLvu172I6rYqCKkaYiND1IYgWNFexVMYiNdlR1vcheHB65evW-C9NsN4Ur2PxelO8jsVH_GZvaoI1jYuN2Tr8aCjPc8k5iVy640J86hbgf5cf8M32MUxbxr9awD-Cb3LwoLE</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Hu, Liangbing</creator><creator>Wu, Hui</creator><creator>Cui, Yi</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Materials Research Society</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20111001</creationdate><title>Metal nanogrids, nanowires, and nanofibers for transparent electrodes</title><author>Hu, Liangbing ; Wu, Hui ; Cui, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-36ea54c6cfcdc51b41eb0cd2c469706d20c2a694b5a665b1d10af6beff26ea803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Conductivity</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrodes: preparations and properties</topic><topic>Electrons</topic><topic>Energy Materials</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gold</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Interactive computer systems</topic><topic>Low cost</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metal films</topic><topic>Metals</topic><topic>Nanofibers</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optoelectronics</topic><topic>Performance evaluation</topic><topic>Photovoltaic cells</topic><topic>Room temperature</topic><topic>Silver</topic><topic>Solar cells</topic><topic>Solution-Processed Transparent Electrodes</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Liangbing</creatorcontrib><creatorcontrib>Wu, Hui</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Liangbing</au><au>Wu, Hui</au><au>Cui, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal nanogrids, nanowires, and nanofibers for transparent electrodes</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>36</volume><issue>10</issue><spage>760</spage><epage>765</epage><pages>760-765</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><coden>MRSBEA</coden><abstract>Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2011.234</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2011-10, Vol.36 (10), p.760-765 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671592382 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied and Technical Physics Characterization and Evaluation of Materials Chemistry Conductivity Electrochemistry Electrodes Electrodes: preparations and properties Electrons Energy Materials Exact sciences and technology General and physical chemistry Gold Grain boundaries Graphene Interactive computer systems Low cost Materials Engineering Materials Science Metal films Metals Nanofibers Nanostructure Nanotechnology Nanowires Optoelectronics Performance evaluation Photovoltaic cells Room temperature Silver Solar cells Solution-Processed Transparent Electrodes Thin films |
title | Metal nanogrids, nanowires, and nanofibers for transparent electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20nanogrids,%20nanowires,%20and%20nanofibers%20for%20transparent%20electrodes&rft.jtitle=MRS%20bulletin&rft.au=Hu,%20Liangbing&rft.date=2011-10-01&rft.volume=36&rft.issue=10&rft.spage=760&rft.epage=765&rft.pages=760-765&rft.issn=0883-7694&rft.eissn=1938-1425&rft.coden=MRSBEA&rft_id=info:doi/10.1557/mrs.2011.234&rft_dat=%3Cproquest_cross%3E2927855733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=899283135&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2011_234&rfr_iscdi=true |