Structure Function Analysis of Two-Scale Scalar Ramps. Part II: Ramp Characteristics and Surface Renewal Flux Estimation
Ramp features in the turbulent scalar field are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. Although finer scale ramp-like shapes embedded within larger scale ramp-like shapes can readily be perceived in turbulent scalar trac...
Gespeichert in:
Veröffentlicht in: | Boundary - layer meteorology 2012-10, Vol.145 (1), p.27-44 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | Boundary - layer meteorology |
container_volume | 145 |
creator | Shapland, T. M. McElrone, A. J. Snyder, R. L. Paw U, K. T. |
description | Ramp features in the turbulent scalar field are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. Although finer scale ramp-like shapes embedded within larger scale ramp-like shapes can readily be perceived in turbulent scalar traces, their presence has largely been overlooked in the literature. We demonstrate the signature of more than one ramp scale in structure functions of the turbulent scalar field measured from above bare ground and two types of short plant canopies, using structure-function time lags ranging in scale from isotropic to larger than the characteristic coherent structures. Spectral analysis of structure functions was used to characterize different scales of turbulent structures. By expanding structure function analysis to include two ramp scales, we characterized the intermittency, duration, and surface renewal flux contribution of the smallest (i.e., Scale One) and the dominant (i.e., Scale Two) coherent structure scales. The frequencies of the coherent structure scales increase with mean wind shear, implying that both Scale One and Scale Two are shear-driven. The embedded Scale One turbulent structure scale is ineffectual in the surface-layer energy and mass transport process. The new method reported here for obtaining surface renewal-based scalar exchange works well over bare ground and short canopies under unstable conditions, effectively eliminating the
α
calibration for these conditions and forming the foundation for analysis over taller and more complex surfaces. |
doi_str_mv | 10.1007/s10546-012-9740-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671590010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355866264</galeid><sourcerecordid>A355866264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-aaf6dbb2d87d6b7f8c821f00aa260b6faa29902a21ecbacf498dcde2ebd197cd3</originalsourceid><addsrcrecordid>eNqFUdFq3DAQNKWFXtN-QN8EpdAXX1eyLFl9O45cehBIyaXPZi1LqYNPvko2Sf4-6zqUUihFoGW1M6NlJsvec1hzAP05cSilyoGL3GgJuX6RrXipi5xLLV5mKwBQeVVw-Tp7k9IdtZqXsMoeDmOc7DhFx3ZTsGM3BLYJ2D-mLrHBs5v7IT9Y7B2bb4zsGo-ntGbfMI5sv__yq2fbHxjRji52aexsYhhadpiiR-vYtQvuHnu266cHdk7zI86_vM1eeeyTe_dcz7Lvu_Ob7df88upiv91c5laWfMwRvWqbRrSVblWjfWUrwT0AolDQKE_VGBAouLMNWi9N1drWCde03GjbFmfZp0X3FIefk0tjfeySdX2PwQ1TqrkiIwwAh_9DQRkBkheGoB_-gt4NUyTfZlShtTKmKgi1XlC3ZGDdBT-MZBOd1h07OwTnO3rfFGVZKSWUJAJfCDYOKUXn61Mkv-IjqdZzzvWSc00513POtSbOx-dVMFFEPmKwXfpNJFkupZyXEQsu0Sjcuvjnyv8SfwIHUre0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037769983</pqid></control><display><type>article</type><title>Structure Function Analysis of Two-Scale Scalar Ramps. Part II: Ramp Characteristics and Surface Renewal Flux Estimation</title><source>SpringerLink Journals</source><creator>Shapland, T. M. ; McElrone, A. J. ; Snyder, R. L. ; Paw U, K. T.</creator><creatorcontrib>Shapland, T. M. ; McElrone, A. J. ; Snyder, R. L. ; Paw U, K. T.</creatorcontrib><description>Ramp features in the turbulent scalar field are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. Although finer scale ramp-like shapes embedded within larger scale ramp-like shapes can readily be perceived in turbulent scalar traces, their presence has largely been overlooked in the literature. We demonstrate the signature of more than one ramp scale in structure functions of the turbulent scalar field measured from above bare ground and two types of short plant canopies, using structure-function time lags ranging in scale from isotropic to larger than the characteristic coherent structures. Spectral analysis of structure functions was used to characterize different scales of turbulent structures. By expanding structure function analysis to include two ramp scales, we characterized the intermittency, duration, and surface renewal flux contribution of the smallest (i.e., Scale One) and the dominant (i.e., Scale Two) coherent structure scales. The frequencies of the coherent structure scales increase with mean wind shear, implying that both Scale One and Scale Two are shear-driven. The embedded Scale One turbulent structure scale is ineffectual in the surface-layer energy and mass transport process. The new method reported here for obtaining surface renewal-based scalar exchange works well over bare ground and short canopies under unstable conditions, effectively eliminating the
α
calibration for these conditions and forming the foundation for analysis over taller and more complex surfaces.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-012-9740-7</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric boundary layer ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Canopies ; Careers ; Coherence ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid dynamics ; Function analysis ; Grounds ; Mass transport ; Meteorology ; Ramps ; Scalars ; Spectral analysis ; Temperature ; Transport processes ; Turbulence ; Wind shear</subject><ispartof>Boundary - layer meteorology, 2012-10, Vol.145 (1), p.27-44</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-aaf6dbb2d87d6b7f8c821f00aa260b6faa29902a21ecbacf498dcde2ebd197cd3</citedby><cites>FETCH-LOGICAL-c451t-aaf6dbb2d87d6b7f8c821f00aa260b6faa29902a21ecbacf498dcde2ebd197cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-012-9740-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-012-9740-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26414443$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shapland, T. M.</creatorcontrib><creatorcontrib>McElrone, A. J.</creatorcontrib><creatorcontrib>Snyder, R. L.</creatorcontrib><creatorcontrib>Paw U, K. T.</creatorcontrib><title>Structure Function Analysis of Two-Scale Scalar Ramps. Part II: Ramp Characteristics and Surface Renewal Flux Estimation</title><title>Boundary - layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>Ramp features in the turbulent scalar field are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. Although finer scale ramp-like shapes embedded within larger scale ramp-like shapes can readily be perceived in turbulent scalar traces, their presence has largely been overlooked in the literature. We demonstrate the signature of more than one ramp scale in structure functions of the turbulent scalar field measured from above bare ground and two types of short plant canopies, using structure-function time lags ranging in scale from isotropic to larger than the characteristic coherent structures. Spectral analysis of structure functions was used to characterize different scales of turbulent structures. By expanding structure function analysis to include two ramp scales, we characterized the intermittency, duration, and surface renewal flux contribution of the smallest (i.e., Scale One) and the dominant (i.e., Scale Two) coherent structure scales. The frequencies of the coherent structure scales increase with mean wind shear, implying that both Scale One and Scale Two are shear-driven. The embedded Scale One turbulent structure scale is ineffectual in the surface-layer energy and mass transport process. The new method reported here for obtaining surface renewal-based scalar exchange works well over bare ground and short canopies under unstable conditions, effectively eliminating the
α
calibration for these conditions and forming the foundation for analysis over taller and more complex surfaces.</description><subject>Atmospheric boundary layer</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Canopies</subject><subject>Careers</subject><subject>Coherence</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>Function analysis</subject><subject>Grounds</subject><subject>Mass transport</subject><subject>Meteorology</subject><subject>Ramps</subject><subject>Scalars</subject><subject>Spectral analysis</subject><subject>Temperature</subject><subject>Transport processes</subject><subject>Turbulence</subject><subject>Wind shear</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFUdFq3DAQNKWFXtN-QN8EpdAXX1eyLFl9O45cehBIyaXPZi1LqYNPvko2Sf4-6zqUUihFoGW1M6NlJsvec1hzAP05cSilyoGL3GgJuX6RrXipi5xLLV5mKwBQeVVw-Tp7k9IdtZqXsMoeDmOc7DhFx3ZTsGM3BLYJ2D-mLrHBs5v7IT9Y7B2bb4zsGo-ntGbfMI5sv__yq2fbHxjRji52aexsYhhadpiiR-vYtQvuHnu266cHdk7zI86_vM1eeeyTe_dcz7Lvu_Ob7df88upiv91c5laWfMwRvWqbRrSVblWjfWUrwT0AolDQKE_VGBAouLMNWi9N1drWCde03GjbFmfZp0X3FIefk0tjfeySdX2PwQ1TqrkiIwwAh_9DQRkBkheGoB_-gt4NUyTfZlShtTKmKgi1XlC3ZGDdBT-MZBOd1h07OwTnO3rfFGVZKSWUJAJfCDYOKUXn61Mkv-IjqdZzzvWSc00513POtSbOx-dVMFFEPmKwXfpNJFkupZyXEQsu0Sjcuvjnyv8SfwIHUre0</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Shapland, T. M.</creator><creator>McElrone, A. J.</creator><creator>Snyder, R. L.</creator><creator>Paw U, K. T.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>Structure Function Analysis of Two-Scale Scalar Ramps. Part II: Ramp Characteristics and Surface Renewal Flux Estimation</title><author>Shapland, T. M. ; McElrone, A. J. ; Snyder, R. L. ; Paw U, K. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-aaf6dbb2d87d6b7f8c821f00aa260b6faa29902a21ecbacf498dcde2ebd197cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atmospheric boundary layer</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Canopies</topic><topic>Careers</topic><topic>Coherence</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>Function analysis</topic><topic>Grounds</topic><topic>Mass transport</topic><topic>Meteorology</topic><topic>Ramps</topic><topic>Scalars</topic><topic>Spectral analysis</topic><topic>Temperature</topic><topic>Transport processes</topic><topic>Turbulence</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapland, T. M.</creatorcontrib><creatorcontrib>McElrone, A. J.</creatorcontrib><creatorcontrib>Snyder, R. L.</creatorcontrib><creatorcontrib>Paw U, K. T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary - layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapland, T. M.</au><au>McElrone, A. J.</au><au>Snyder, R. L.</au><au>Paw U, K. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Function Analysis of Two-Scale Scalar Ramps. Part II: Ramp Characteristics and Surface Renewal Flux Estimation</atitle><jtitle>Boundary - layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>145</volume><issue>1</issue><spage>27</spage><epage>44</epage><pages>27-44</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>Ramp features in the turbulent scalar field are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. Although finer scale ramp-like shapes embedded within larger scale ramp-like shapes can readily be perceived in turbulent scalar traces, their presence has largely been overlooked in the literature. We demonstrate the signature of more than one ramp scale in structure functions of the turbulent scalar field measured from above bare ground and two types of short plant canopies, using structure-function time lags ranging in scale from isotropic to larger than the characteristic coherent structures. Spectral analysis of structure functions was used to characterize different scales of turbulent structures. By expanding structure function analysis to include two ramp scales, we characterized the intermittency, duration, and surface renewal flux contribution of the smallest (i.e., Scale One) and the dominant (i.e., Scale Two) coherent structure scales. The frequencies of the coherent structure scales increase with mean wind shear, implying that both Scale One and Scale Two are shear-driven. The embedded Scale One turbulent structure scale is ineffectual in the surface-layer energy and mass transport process. The new method reported here for obtaining surface renewal-based scalar exchange works well over bare ground and short canopies under unstable conditions, effectively eliminating the
α
calibration for these conditions and forming the foundation for analysis over taller and more complex surfaces.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-012-9740-7</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary - layer meteorology, 2012-10, Vol.145 (1), p.27-44 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671590010 |
source | SpringerLink Journals |
subjects | Atmospheric boundary layer Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Canopies Careers Coherence Convection, turbulence, diffusion. Boundary layer structure and dynamics Earth and Environmental Science Earth Sciences Earth, ocean, space Exact sciences and technology External geophysics Fluid dynamics Function analysis Grounds Mass transport Meteorology Ramps Scalars Spectral analysis Temperature Transport processes Turbulence Wind shear |
title | Structure Function Analysis of Two-Scale Scalar Ramps. Part II: Ramp Characteristics and Surface Renewal Flux Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Function%20Analysis%20of%20Two-Scale%20Scalar%20Ramps.%20Part%20II:%20Ramp%20Characteristics%20and%20Surface%20Renewal%20Flux%20Estimation&rft.jtitle=Boundary%20-%20layer%20meteorology&rft.au=Shapland,%20T.%20M.&rft.date=2012-10-01&rft.volume=145&rft.issue=1&rft.spage=27&rft.epage=44&rft.pages=27-44&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1007/s10546-012-9740-7&rft_dat=%3Cgale_proqu%3EA355866264%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037769983&rft_id=info:pmid/&rft_galeid=A355866264&rfr_iscdi=true |