Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis–cracking of HDPE

•Sequenced pyrolysis–cracking of HDPE using HZSM-5 zeolite yields 60wt% of olefins.•Catalyst is deactivated by coke; we report on pathways, equations and precursors.•Waxes deposit on the mesopores of the catalyst and evolve towards condensed coke.•Olefins form coke on the acid sites of the catalyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2014-04, Vol.148-149, p.436-445
Hauptverfasser: Ibáñez, M., Artetxe, M., Lopez, G., Elordi, G., Bilbao, J., Olazar, M., Castaño, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue
container_start_page 436
container_title Applied catalysis. B, Environmental
container_volume 148-149
creator Ibáñez, M.
Artetxe, M.
Lopez, G.
Elordi, G.
Bilbao, J.
Olazar, M.
Castaño, P.
description •Sequenced pyrolysis–cracking of HDPE using HZSM-5 zeolite yields 60wt% of olefins.•Catalyst is deactivated by coke; we report on pathways, equations and precursors.•Waxes deposit on the mesopores of the catalyst and evolve towards condensed coke.•Olefins form coke on the acid sites of the catalyst that plug the micropores. The pyrolysis–cracking of high-density polyethylene (HDPE) has been studied in two sequenced steps: (1) flash pyrolysis in a conical spouted bed reactor, and (2) catalytic cracking of the volatiles (waxes) in a fixed bed reactor containing a HZSM-5 zeolite catalyst, aiming light olefins as final products. The pyrolysis and cracking have been carried out isothermally at 500°C, with a continuous feed of HDPE (1gmin−1) for up to 5h (300g of HDPE fed). We have correlated the catalytic deactivation by coke (carbonaceous deposits), in terms of amount and composition, with the profiles of gas composition along time on stream and space time. The amount and composition of coke in three axial positions of the catalytic bed have been elucidated using thermogravimetric (TG-TPO) and spectroscopic techniques (13C CP-MAS NMR, Raman, FTIR, FTIR-TPO-MS and FTIR-pyridine). Our results show that there are two pathways of coke formation: (i) initiation, during the first hour on stream and particularly in the inlet of the catalytic reactor; and (ii) steady coke formation, after the first hour on stream which is more severe in the last axial position of the catalytic reactor. The initiation step stems from the degradation of the waxes produced in the pyrolysis of HDPE and causes a dropping in the mesopore area of the catalyst. The steady coke formation step is caused by the condensation of light olefins and causes the degradation of the micropore area and the Brønsted acidity of the catalyst.
doi_str_mv 10.1016/j.apcatb.2013.11.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671587660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092633731300708X</els_id><sourcerecordid>1671587660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-2dff21f7b752bf28d1ea37325231dd1fbd29fea9c17e19335cbc8f51e2e9f9243</originalsourceid><addsrcrecordid>eNp9kM1u1DAURq2KSgwtb8DCGyQ2Cb72JE42lapSOpWKigRs2FiOfV08TeNge5Cmq74Db9gnqadTsWRlyfec-_MR8g5YDQzaj-taz0bnoeYMRA1QMy4OyAI6KSrRdeIVWbCet5UQUrwmb1JaM1YQ3i1IvrQ4Ze988X2YaHA0_0Jqwi1Si3NIPqOlpaAnuvr57UvV0HsMY_mlxdDjNmVqN9FPN89ewt8bnExR5m0MperT48NfE7W53SGl--rT1_Njcuj0mPDty3tEfnw-_362qq6uLy7PTq8qs5Q8V9w6x8HJQTZ8cLyzgLpcwBsuwFpwg-W9Q90bkAi9EI0ZTOcaQI696_lSHJEP-75zDGWvlNWdTwbHUU8YNklBK6HpZNuygi73qIkhpYhOzdHf6bhVwNQuZLVW-5DVLmQFoEqCRXv_MkEno0cX9WR8-ufyrpWt6NvCnew5LOf-8RhVMv45KB_RZGWD__-gJ7F6llQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671587660</pqid></control><display><type>article</type><title>Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis–cracking of HDPE</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ibáñez, M. ; Artetxe, M. ; Lopez, G. ; Elordi, G. ; Bilbao, J. ; Olazar, M. ; Castaño, P.</creator><creatorcontrib>Ibáñez, M. ; Artetxe, M. ; Lopez, G. ; Elordi, G. ; Bilbao, J. ; Olazar, M. ; Castaño, P.</creatorcontrib><description>•Sequenced pyrolysis–cracking of HDPE using HZSM-5 zeolite yields 60wt% of olefins.•Catalyst is deactivated by coke; we report on pathways, equations and precursors.•Waxes deposit on the mesopores of the catalyst and evolve towards condensed coke.•Olefins form coke on the acid sites of the catalyst that plug the micropores. The pyrolysis–cracking of high-density polyethylene (HDPE) has been studied in two sequenced steps: (1) flash pyrolysis in a conical spouted bed reactor, and (2) catalytic cracking of the volatiles (waxes) in a fixed bed reactor containing a HZSM-5 zeolite catalyst, aiming light olefins as final products. The pyrolysis and cracking have been carried out isothermally at 500°C, with a continuous feed of HDPE (1gmin−1) for up to 5h (300g of HDPE fed). We have correlated the catalytic deactivation by coke (carbonaceous deposits), in terms of amount and composition, with the profiles of gas composition along time on stream and space time. The amount and composition of coke in three axial positions of the catalytic bed have been elucidated using thermogravimetric (TG-TPO) and spectroscopic techniques (13C CP-MAS NMR, Raman, FTIR, FTIR-TPO-MS and FTIR-pyridine). Our results show that there are two pathways of coke formation: (i) initiation, during the first hour on stream and particularly in the inlet of the catalytic reactor; and (ii) steady coke formation, after the first hour on stream which is more severe in the last axial position of the catalytic reactor. The initiation step stems from the degradation of the waxes produced in the pyrolysis of HDPE and causes a dropping in the mesopore area of the catalyst. The steady coke formation step is caused by the condensation of light olefins and causes the degradation of the micropore area and the Brønsted acidity of the catalyst.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2013.11.023</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Catalysis ; Catalysts ; Chemistry ; Coke ; Coke deactivation ; Exact sciences and technology ; General and physical chemistry ; Ion-exchange ; Light olefins ; MFI zeolite ; Olefins ; Plastic valorization ; Polyethylenes ; Pyrolysis ; Reactors ; Spectroscopy ; Streams ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Zeolites: preparations and properties</subject><ispartof>Applied catalysis. B, Environmental, 2014-04, Vol.148-149, p.436-445</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-2dff21f7b752bf28d1ea37325231dd1fbd29fea9c17e19335cbc8f51e2e9f9243</citedby><cites>FETCH-LOGICAL-c472t-2dff21f7b752bf28d1ea37325231dd1fbd29fea9c17e19335cbc8f51e2e9f9243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092633731300708X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28676396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ibáñez, M.</creatorcontrib><creatorcontrib>Artetxe, M.</creatorcontrib><creatorcontrib>Lopez, G.</creatorcontrib><creatorcontrib>Elordi, G.</creatorcontrib><creatorcontrib>Bilbao, J.</creatorcontrib><creatorcontrib>Olazar, M.</creatorcontrib><creatorcontrib>Castaño, P.</creatorcontrib><title>Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis–cracking of HDPE</title><title>Applied catalysis. B, Environmental</title><description>•Sequenced pyrolysis–cracking of HDPE using HZSM-5 zeolite yields 60wt% of olefins.•Catalyst is deactivated by coke; we report on pathways, equations and precursors.•Waxes deposit on the mesopores of the catalyst and evolve towards condensed coke.•Olefins form coke on the acid sites of the catalyst that plug the micropores. The pyrolysis–cracking of high-density polyethylene (HDPE) has been studied in two sequenced steps: (1) flash pyrolysis in a conical spouted bed reactor, and (2) catalytic cracking of the volatiles (waxes) in a fixed bed reactor containing a HZSM-5 zeolite catalyst, aiming light olefins as final products. The pyrolysis and cracking have been carried out isothermally at 500°C, with a continuous feed of HDPE (1gmin−1) for up to 5h (300g of HDPE fed). We have correlated the catalytic deactivation by coke (carbonaceous deposits), in terms of amount and composition, with the profiles of gas composition along time on stream and space time. The amount and composition of coke in three axial positions of the catalytic bed have been elucidated using thermogravimetric (TG-TPO) and spectroscopic techniques (13C CP-MAS NMR, Raman, FTIR, FTIR-TPO-MS and FTIR-pyridine). Our results show that there are two pathways of coke formation: (i) initiation, during the first hour on stream and particularly in the inlet of the catalytic reactor; and (ii) steady coke formation, after the first hour on stream which is more severe in the last axial position of the catalytic reactor. The initiation step stems from the degradation of the waxes produced in the pyrolysis of HDPE and causes a dropping in the mesopore area of the catalyst. The steady coke formation step is caused by the condensation of light olefins and causes the degradation of the micropore area and the Brønsted acidity of the catalyst.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Coke</subject><subject>Coke deactivation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Ion-exchange</subject><subject>Light olefins</subject><subject>MFI zeolite</subject><subject>Olefins</subject><subject>Plastic valorization</subject><subject>Polyethylenes</subject><subject>Pyrolysis</subject><subject>Reactors</subject><subject>Spectroscopy</subject><subject>Streams</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Zeolites: preparations and properties</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1DAURq2KSgwtb8DCGyQ2Cb72JE42lapSOpWKigRs2FiOfV08TeNge5Cmq74Db9gnqadTsWRlyfec-_MR8g5YDQzaj-taz0bnoeYMRA1QMy4OyAI6KSrRdeIVWbCet5UQUrwmb1JaM1YQ3i1IvrQ4Ze988X2YaHA0_0Jqwi1Si3NIPqOlpaAnuvr57UvV0HsMY_mlxdDjNmVqN9FPN89ewt8bnExR5m0MperT48NfE7W53SGl--rT1_Njcuj0mPDty3tEfnw-_362qq6uLy7PTq8qs5Q8V9w6x8HJQTZ8cLyzgLpcwBsuwFpwg-W9Q90bkAi9EI0ZTOcaQI696_lSHJEP-75zDGWvlNWdTwbHUU8YNklBK6HpZNuygi73qIkhpYhOzdHf6bhVwNQuZLVW-5DVLmQFoEqCRXv_MkEno0cX9WR8-ufyrpWt6NvCnew5LOf-8RhVMv45KB_RZGWD__-gJ7F6llQ</recordid><startdate>20140427</startdate><enddate>20140427</enddate><creator>Ibáñez, M.</creator><creator>Artetxe, M.</creator><creator>Lopez, G.</creator><creator>Elordi, G.</creator><creator>Bilbao, J.</creator><creator>Olazar, M.</creator><creator>Castaño, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7SU</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140427</creationdate><title>Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis–cracking of HDPE</title><author>Ibáñez, M. ; Artetxe, M. ; Lopez, G. ; Elordi, G. ; Bilbao, J. ; Olazar, M. ; Castaño, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-2dff21f7b752bf28d1ea37325231dd1fbd29fea9c17e19335cbc8f51e2e9f9243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Coke</topic><topic>Coke deactivation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Ion-exchange</topic><topic>Light olefins</topic><topic>MFI zeolite</topic><topic>Olefins</topic><topic>Plastic valorization</topic><topic>Polyethylenes</topic><topic>Pyrolysis</topic><topic>Reactors</topic><topic>Spectroscopy</topic><topic>Streams</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Zeolites: preparations and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibáñez, M.</creatorcontrib><creatorcontrib>Artetxe, M.</creatorcontrib><creatorcontrib>Lopez, G.</creatorcontrib><creatorcontrib>Elordi, G.</creatorcontrib><creatorcontrib>Bilbao, J.</creatorcontrib><creatorcontrib>Olazar, M.</creatorcontrib><creatorcontrib>Castaño, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibáñez, M.</au><au>Artetxe, M.</au><au>Lopez, G.</au><au>Elordi, G.</au><au>Bilbao, J.</au><au>Olazar, M.</au><au>Castaño, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis–cracking of HDPE</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2014-04-27</date><risdate>2014</risdate><volume>148-149</volume><spage>436</spage><epage>445</epage><pages>436-445</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>•Sequenced pyrolysis–cracking of HDPE using HZSM-5 zeolite yields 60wt% of olefins.•Catalyst is deactivated by coke; we report on pathways, equations and precursors.•Waxes deposit on the mesopores of the catalyst and evolve towards condensed coke.•Olefins form coke on the acid sites of the catalyst that plug the micropores. The pyrolysis–cracking of high-density polyethylene (HDPE) has been studied in two sequenced steps: (1) flash pyrolysis in a conical spouted bed reactor, and (2) catalytic cracking of the volatiles (waxes) in a fixed bed reactor containing a HZSM-5 zeolite catalyst, aiming light olefins as final products. The pyrolysis and cracking have been carried out isothermally at 500°C, with a continuous feed of HDPE (1gmin−1) for up to 5h (300g of HDPE fed). We have correlated the catalytic deactivation by coke (carbonaceous deposits), in terms of amount and composition, with the profiles of gas composition along time on stream and space time. The amount and composition of coke in three axial positions of the catalytic bed have been elucidated using thermogravimetric (TG-TPO) and spectroscopic techniques (13C CP-MAS NMR, Raman, FTIR, FTIR-TPO-MS and FTIR-pyridine). Our results show that there are two pathways of coke formation: (i) initiation, during the first hour on stream and particularly in the inlet of the catalytic reactor; and (ii) steady coke formation, after the first hour on stream which is more severe in the last axial position of the catalytic reactor. The initiation step stems from the degradation of the waxes produced in the pyrolysis of HDPE and causes a dropping in the mesopore area of the catalyst. The steady coke formation step is caused by the condensation of light olefins and causes the degradation of the micropore area and the Brønsted acidity of the catalyst.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2013.11.023</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2014-04, Vol.148-149, p.436-445
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_miscellaneous_1671587660
source ScienceDirect Journals (5 years ago - present)
subjects Catalysis
Catalysts
Chemistry
Coke
Coke deactivation
Exact sciences and technology
General and physical chemistry
Ion-exchange
Light olefins
MFI zeolite
Olefins
Plastic valorization
Polyethylenes
Pyrolysis
Reactors
Spectroscopy
Streams
Surface physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Zeolites: preparations and properties
title Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis–cracking of HDPE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20coke%20deposited%20on%20an%20HZSM-5%20zeolite%20catalyst%20during%20the%20sequenced%20pyrolysis%E2%80%93cracking%20of%20HDPE&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Ib%C3%A1%C3%B1ez,%20M.&rft.date=2014-04-27&rft.volume=148-149&rft.spage=436&rft.epage=445&rft.pages=436-445&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2013.11.023&rft_dat=%3Cproquest_cross%3E1671587660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671587660&rft_id=info:pmid/&rft_els_id=S092633731300708X&rfr_iscdi=true