Baker-Akhiezer functions and generalised Macdonald-Mehta integrals

For the rational Baker-Akhiezer functions associated with special arrangements of hyperplanes with multiplicities we establish an integral identity, which may be viewed as a generalisation of the self-duality property of the usual Gaussian function with respect to the Fourier transformation. We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2013-05, Vol.54 (5), p.1
Hauptverfasser: Feigin, M. V., Hallnäs, M. A., Veselov, A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the rational Baker-Akhiezer functions associated with special arrangements of hyperplanes with multiplicities we establish an integral identity, which may be viewed as a generalisation of the self-duality property of the usual Gaussian function with respect to the Fourier transformation. We show that the value of properly normalised Baker-Akhiezer function at the origin can be given by an integral of Macdonald-Mehta type and explicitly compute these integrals for all known Baker-Akhiezer arrangements. We use the Dotsenko-Fateev integrals to extend this calculation to all deformed root systems, related to the non-exceptional basic classical Lie superalgebras.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4804615