Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose
The Escherichia coli XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate- co -3-hydroxyvalerate) [P(3HB- co -3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for th...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2014-01, Vol.98 (1), p.95-104 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | 1 |
container_start_page | 95 |
container_title | Applied microbiology and biotechnology |
container_volume | 98 |
creator | Yang, Jung Eun Choi, Yong Jun Lee, Se Jin Kang, Kyoung-Hee Lee, Hyuk Oh, Young Hoon Lee, Seung Hwan Park, Si Jae Lee, Sang Yup |
description | The
Escherichia coli
XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-
co
-3-hydroxyvalerate) [P(3HB-
co
-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the
Dickeya dadantii
3937 2-ketobutyrate oxidase or the
E. coli
pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the
Ralstonia eutropha
propionyl-CoA synthetase (PrpE) or the
E. coli
acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the
E. coli tdcE
gene or the
Clostridium difficile pflB
gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-
co
-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant
E. coli
XL1-blue strain equipped with citramalate pathway expressing the
E. coli poxB L253F V380A
gene and
R. eutropha prpE
gene together with the
R. eutropha
PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-
co
-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-
co
-3HV) could be increased up to 5.5 mol% by additional deletion of the
prpC
and
scpC
genes, which are responsible for the metabolism of propionyl-CoA in host strains. |
doi_str_mv | 10.1007/s00253-013-5285-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671586658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357759819</galeid><sourcerecordid>A357759819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-bc96e166cc48fd73288cfe05cbffbcd671a3f651148a9a3dee0c1b549a4d38df3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEotPCD2CDIrFpFy5-x1lWVSmVipB4rC3Huc64ysSDnUDTX4-jKYVBIJAXlq--c6RzfYriBcGnBOPqdcKYCoYwYUhQJdDdo2JFOKMIS8IfFytMKoEqUauD4jClG4wJVVI-LQ4oJ4QpqlbFt3cwmib03pYwdH4AiH7oyuDKi2TX-WHX3pQ2A6ULsWx8SPMwriH5tEDb0M_HDK3nNobbuZnGOZoRkA3oYfjV9LAMT0oXw6bs-smGBM-KJ870CZ7f30fF5zcXn87fouv3l1fnZ9fISk5H1NhaApHSWq5cWzGqlHWAhW2ca2wrK2KYk4IQrkxtWAuALWkErw1vmWodOyqOd77bGL5MkEa98clC35sBwpQ0yRYiL0Wof6O8ppJKgvn_oLhSQjCa0Ve_oTdhikPOnKmKMSwZVz-pLm9L-8GFMRq7mOozJqrlD0mdqdM_UPm0sPE2DOB8nu8JTvYEmRnhduzMlJK--vhhnyU71saQUgSnt9FvTJw1wXqpm97VTee66aVu-i5rXt6Hm5oNtA-KH_3KAN0Babv0CuIv6f_q-h0Kot9G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473306348</pqid></control><display><type>article</type><title>Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Yang, Jung Eun ; Choi, Yong Jun ; Lee, Se Jin ; Kang, Kyoung-Hee ; Lee, Hyuk ; Oh, Young Hoon ; Lee, Seung Hwan ; Park, Si Jae ; Lee, Sang Yup</creator><creatorcontrib>Yang, Jung Eun ; Choi, Yong Jun ; Lee, Se Jin ; Kang, Kyoung-Hee ; Lee, Hyuk ; Oh, Young Hoon ; Lee, Seung Hwan ; Park, Si Jae ; Lee, Sang Yup</creatorcontrib><description>The
Escherichia coli
XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-
co
-3-hydroxyvalerate) [P(3HB-
co
-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the
Dickeya dadantii
3937 2-ketobutyrate oxidase or the
E. coli
pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the
Ralstonia eutropha
propionyl-CoA synthetase (PrpE) or the
E. coli
acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the
E. coli tdcE
gene or the
Clostridium difficile pflB
gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-
co
-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant
E. coli
XL1-blue strain equipped with citramalate pathway expressing the
E. coli poxB L253F V380A
gene and
R. eutropha prpE
gene together with the
R. eutropha
PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-
co
-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-
co
-3HV) could be increased up to 5.5 mol% by additional deletion of the
prpC
and
scpC
genes, which are responsible for the metabolism of propionyl-CoA in host strains.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-013-5285-z</identifier><identifier>PMID: 24113828</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; Carbon ; Carbon sources ; Chemical properties ; Clostridium difficile - enzymology ; Clostridium difficile - genetics ; Cupriavidus necator - enzymology ; Cupriavidus necator - genetics ; Direct conversion ; E coli ; Engineering ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genes ; Genetic aspects ; Genetic engineering ; Glucose ; Glucose - metabolism ; Health aspects ; Life Sciences ; Metabolic Engineering ; Metabolic Networks and Pathways - genetics ; Metabolism ; Microbial Genetics and Genomics ; Microbiology ; Oxidase ; Pathways ; Physiological aspects ; Polyesters ; Polyesters - metabolism ; Polyhydroxyalkanoates ; Polymers ; Pyruvates ; Research centers ; Strain ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2014-01, Vol.98 (1), p.95-104</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-bc96e166cc48fd73288cfe05cbffbcd671a3f651148a9a3dee0c1b549a4d38df3</citedby><cites>FETCH-LOGICAL-c642t-bc96e166cc48fd73288cfe05cbffbcd671a3f651148a9a3dee0c1b549a4d38df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-013-5285-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-013-5285-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24113828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jung Eun</creatorcontrib><creatorcontrib>Choi, Yong Jun</creatorcontrib><creatorcontrib>Lee, Se Jin</creatorcontrib><creatorcontrib>Kang, Kyoung-Hee</creatorcontrib><creatorcontrib>Lee, Hyuk</creatorcontrib><creatorcontrib>Oh, Young Hoon</creatorcontrib><creatorcontrib>Lee, Seung Hwan</creatorcontrib><creatorcontrib>Park, Si Jae</creatorcontrib><creatorcontrib>Lee, Sang Yup</creatorcontrib><title>Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The
Escherichia coli
XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-
co
-3-hydroxyvalerate) [P(3HB-
co
-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the
Dickeya dadantii
3937 2-ketobutyrate oxidase or the
E. coli
pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the
Ralstonia eutropha
propionyl-CoA synthetase (PrpE) or the
E. coli
acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the
E. coli tdcE
gene or the
Clostridium difficile pflB
gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-
co
-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant
E. coli
XL1-blue strain equipped with citramalate pathway expressing the
E. coli poxB L253F V380A
gene and
R. eutropha prpE
gene together with the
R. eutropha
PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-
co
-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-
co
-3HV) could be increased up to 5.5 mol% by additional deletion of the
prpC
and
scpC
genes, which are responsible for the metabolism of propionyl-CoA in host strains.</description><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Chemical properties</subject><subject>Clostridium difficile - enzymology</subject><subject>Clostridium difficile - genetics</subject><subject>Cupriavidus necator - enzymology</subject><subject>Cupriavidus necator - genetics</subject><subject>Direct conversion</subject><subject>E coli</subject><subject>Engineering</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Health aspects</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Oxidase</subject><subject>Pathways</subject><subject>Physiological aspects</subject><subject>Polyesters</subject><subject>Polyesters - metabolism</subject><subject>Polyhydroxyalkanoates</subject><subject>Polymers</subject><subject>Pyruvates</subject><subject>Research centers</subject><subject>Strain</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkktv1DAUhSMEotPCD2CDIrFpFy5-x1lWVSmVipB4rC3Huc64ysSDnUDTX4-jKYVBIJAXlq--c6RzfYriBcGnBOPqdcKYCoYwYUhQJdDdo2JFOKMIS8IfFytMKoEqUauD4jClG4wJVVI-LQ4oJ4QpqlbFt3cwmib03pYwdH4AiH7oyuDKi2TX-WHX3pQ2A6ULsWx8SPMwriH5tEDb0M_HDK3nNobbuZnGOZoRkA3oYfjV9LAMT0oXw6bs-smGBM-KJ870CZ7f30fF5zcXn87fouv3l1fnZ9fISk5H1NhaApHSWq5cWzGqlHWAhW2ca2wrK2KYk4IQrkxtWAuALWkErw1vmWodOyqOd77bGL5MkEa98clC35sBwpQ0yRYiL0Wof6O8ppJKgvn_oLhSQjCa0Ve_oTdhikPOnKmKMSwZVz-pLm9L-8GFMRq7mOozJqrlD0mdqdM_UPm0sPE2DOB8nu8JTvYEmRnhduzMlJK--vhhnyU71saQUgSnt9FvTJw1wXqpm97VTee66aVu-i5rXt6Hm5oNtA-KH_3KAN0Babv0CuIv6f_q-h0Kot9G</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Yang, Jung Eun</creator><creator>Choi, Yong Jun</creator><creator>Lee, Se Jin</creator><creator>Kang, Kyoung-Hee</creator><creator>Lee, Hyuk</creator><creator>Oh, Young Hoon</creator><creator>Lee, Seung Hwan</creator><creator>Park, Si Jae</creator><creator>Lee, Sang Yup</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose</title><author>Yang, Jung Eun ; Choi, Yong Jun ; Lee, Se Jin ; Kang, Kyoung-Hee ; Lee, Hyuk ; Oh, Young Hoon ; Lee, Seung Hwan ; Park, Si Jae ; Lee, Sang Yup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-bc96e166cc48fd73288cfe05cbffbcd671a3f651148a9a3dee0c1b549a4d38df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Chemical properties</topic><topic>Clostridium difficile - enzymology</topic><topic>Clostridium difficile - genetics</topic><topic>Cupriavidus necator - enzymology</topic><topic>Cupriavidus necator - genetics</topic><topic>Direct conversion</topic><topic>E coli</topic><topic>Engineering</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Health aspects</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Oxidase</topic><topic>Pathways</topic><topic>Physiological aspects</topic><topic>Polyesters</topic><topic>Polyesters - metabolism</topic><topic>Polyhydroxyalkanoates</topic><topic>Polymers</topic><topic>Pyruvates</topic><topic>Research centers</topic><topic>Strain</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jung Eun</creatorcontrib><creatorcontrib>Choi, Yong Jun</creatorcontrib><creatorcontrib>Lee, Se Jin</creatorcontrib><creatorcontrib>Kang, Kyoung-Hee</creatorcontrib><creatorcontrib>Lee, Hyuk</creatorcontrib><creatorcontrib>Oh, Young Hoon</creatorcontrib><creatorcontrib>Lee, Seung Hwan</creatorcontrib><creatorcontrib>Park, Si Jae</creatorcontrib><creatorcontrib>Lee, Sang Yup</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jung Eun</au><au>Choi, Yong Jun</au><au>Lee, Se Jin</au><au>Kang, Kyoung-Hee</au><au>Lee, Hyuk</au><au>Oh, Young Hoon</au><au>Lee, Seung Hwan</au><au>Park, Si Jae</au><au>Lee, Sang Yup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>98</volume><issue>1</issue><spage>95</spage><epage>104</epage><pages>95-104</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The
Escherichia coli
XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-
co
-3-hydroxyvalerate) [P(3HB-
co
-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the
Dickeya dadantii
3937 2-ketobutyrate oxidase or the
E. coli
pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the
Ralstonia eutropha
propionyl-CoA synthetase (PrpE) or the
E. coli
acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the
E. coli tdcE
gene or the
Clostridium difficile pflB
gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-
co
-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant
E. coli
XL1-blue strain equipped with citramalate pathway expressing the
E. coli poxB L253F V380A
gene and
R. eutropha prpE
gene together with the
R. eutropha
PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-
co
-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-
co
-3HV) could be increased up to 5.5 mol% by additional deletion of the
prpC
and
scpC
genes, which are responsible for the metabolism of propionyl-CoA in host strains.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24113828</pmid><doi>10.1007/s00253-013-5285-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2014-01, Vol.98 (1), p.95-104 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671586658 |
source | MEDLINE; SpringerLink Journals |
subjects | Biomedical and Life Sciences Biosynthesis Biotechnological Products and Process Engineering Biotechnology Carbon Carbon sources Chemical properties Clostridium difficile - enzymology Clostridium difficile - genetics Cupriavidus necator - enzymology Cupriavidus necator - genetics Direct conversion E coli Engineering Escherichia coli Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli - metabolism Genes Genetic aspects Genetic engineering Glucose Glucose - metabolism Health aspects Life Sciences Metabolic Engineering Metabolic Networks and Pathways - genetics Metabolism Microbial Genetics and Genomics Microbiology Oxidase Pathways Physiological aspects Polyesters Polyesters - metabolism Polyhydroxyalkanoates Polymers Pyruvates Research centers Strain Studies |
title | Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Escherichia%20coli%20for%20biosynthesis%20of%20poly(3-hydroxybutyrate-co-3-hydroxyvalerate)%20from%20glucose&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Yang,%20Jung%20Eun&rft.date=2014-01-01&rft.volume=98&rft.issue=1&rft.spage=95&rft.epage=104&rft.pages=95-104&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-013-5285-z&rft_dat=%3Cgale_proqu%3EA357759819%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473306348&rft_id=info:pmid/24113828&rft_galeid=A357759819&rfr_iscdi=true |