On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs

For the interpolation of continuous functions and the solution of partial differential equation (PDE) by radial basis function (RBF) collocation, it has been observed that solution becomes increasingly more accurate as the shape of the RBF is flattened by the adjustment of a shape parameter. In the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 2010-09, Vol.34 (9), p.802-809
Hauptverfasser: Huang, C.-S., Yen, H.-D., Cheng, A.H.-D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 9
container_start_page 802
container_title Engineering analysis with boundary elements
container_volume 34
creator Huang, C.-S.
Yen, H.-D.
Cheng, A.H.-D.
description For the interpolation of continuous functions and the solution of partial differential equation (PDE) by radial basis function (RBF) collocation, it has been observed that solution becomes increasingly more accurate as the shape of the RBF is flattened by the adjustment of a shape parameter. In the case of interpolation of continuous functions, it has been proven that in the limit of increasingly flat RBF, the interpolant reduces to Lagrangian polynomials. Does this limiting behavior implies that RBFs can perform no better than Lagrangian polynomials in the interpolation of a function, as well as in the solution of PDE? In this paper, arbitrary precision computation is used to test these and other conjectures. It is found that RBF in fact performs better than polynomials, as the optimal shape parameter exists not in the limit, but at a finite value.
doi_str_mv 10.1016/j.enganabound.2010.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671586386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799710000640</els_id><sourcerecordid>1671586386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-ee1496ded9b0ddaf887d394cb55fcf4fb8c92dd99d121866f852058728befb9a3</originalsourceid><addsrcrecordid>eNqNkE1LJDEQhsOisOO4_yF7WPDSYz76Izkus7orCHpwYW8hnVQ0QyZpk-4F_73REfEoFBRUPfVW1YvQd0o2lND-fLeBeK-jHtMS7YaRWid8Qwj7glZUDLyhcvh3hFZEdl0zSDl8RSel7AihnJB-hcJNxPMDYB9NBl18vA9P2AU946yt1wGPtViwW6KZfYpYR4vTNPt9bZUHPQGedNZ7mCFjl_KrVklheYWTwxCCr7jBt78uyik6djoU-PaW1-jv5cXd9k9zffP7avvzujFctHMDQFvZW7ByJNZqJ8RguWzN2HXOuNaNwkhmrZSWMir63omOkU4MTIzgRqn5Gp0ddKecHhcos9r7YuopOkJaiqL9QDvR8xprJA-oyamUDE5NuT6XnxQl6sVhtVMfHFYvDivCVXW4zv54W6OL0cFlHY0v7wKMSc5aISq3PXBQf_7vIatiPEQD1mcws7LJf2LbM88cmbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671586386</pqid></control><display><type>article</type><title>On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, C.-S. ; Yen, H.-D. ; Cheng, A.H.-D.</creator><creatorcontrib>Huang, C.-S. ; Yen, H.-D. ; Cheng, A.H.-D.</creatorcontrib><description>For the interpolation of continuous functions and the solution of partial differential equation (PDE) by radial basis function (RBF) collocation, it has been observed that solution becomes increasingly more accurate as the shape of the RBF is flattened by the adjustment of a shape parameter. In the case of interpolation of continuous functions, it has been proven that in the limit of increasingly flat RBF, the interpolant reduces to Lagrangian polynomials. Does this limiting behavior implies that RBFs can perform no better than Lagrangian polynomials in the interpolation of a function, as well as in the solution of PDE? In this paper, arbitrary precision computation is used to test these and other conjectures. It is found that RBF in fact performs better than polynomials, as the optimal shape parameter exists not in the limit, but at a finite value.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2010.03.002</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Arbitrary precision computation ; Boundary element method ; Constraining ; Error estimate ; Exact sciences and technology ; Flattening ; Increasingly flat radial basis function ; Interpolation ; Mathematical analysis ; Mathematical models ; Mathematics ; Meshless method ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Multiquadric collocation method ; Numerical analysis. Scientific computation ; Optimization ; Partial differential equations ; Radial basis function ; Sciences and techniques of general use</subject><ispartof>Engineering analysis with boundary elements, 2010-09, Vol.34 (9), p.802-809</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-ee1496ded9b0ddaf887d394cb55fcf4fb8c92dd99d121866f852058728befb9a3</citedby><cites>FETCH-LOGICAL-c384t-ee1496ded9b0ddaf887d394cb55fcf4fb8c92dd99d121866f852058728befb9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0955799710000640$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22932488$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, C.-S.</creatorcontrib><creatorcontrib>Yen, H.-D.</creatorcontrib><creatorcontrib>Cheng, A.H.-D.</creatorcontrib><title>On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs</title><title>Engineering analysis with boundary elements</title><description>For the interpolation of continuous functions and the solution of partial differential equation (PDE) by radial basis function (RBF) collocation, it has been observed that solution becomes increasingly more accurate as the shape of the RBF is flattened by the adjustment of a shape parameter. In the case of interpolation of continuous functions, it has been proven that in the limit of increasingly flat RBF, the interpolant reduces to Lagrangian polynomials. Does this limiting behavior implies that RBFs can perform no better than Lagrangian polynomials in the interpolation of a function, as well as in the solution of PDE? In this paper, arbitrary precision computation is used to test these and other conjectures. It is found that RBF in fact performs better than polynomials, as the optimal shape parameter exists not in the limit, but at a finite value.</description><subject>Arbitrary precision computation</subject><subject>Boundary element method</subject><subject>Constraining</subject><subject>Error estimate</subject><subject>Exact sciences and technology</subject><subject>Flattening</subject><subject>Increasingly flat radial basis function</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Meshless method</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Multiquadric collocation method</subject><subject>Numerical analysis. Scientific computation</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Radial basis function</subject><subject>Sciences and techniques of general use</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LJDEQhsOisOO4_yF7WPDSYz76Izkus7orCHpwYW8hnVQ0QyZpk-4F_73REfEoFBRUPfVW1YvQd0o2lND-fLeBeK-jHtMS7YaRWid8Qwj7glZUDLyhcvh3hFZEdl0zSDl8RSel7AihnJB-hcJNxPMDYB9NBl18vA9P2AU946yt1wGPtViwW6KZfYpYR4vTNPt9bZUHPQGedNZ7mCFjl_KrVklheYWTwxCCr7jBt78uyik6djoU-PaW1-jv5cXd9k9zffP7avvzujFctHMDQFvZW7ByJNZqJ8RguWzN2HXOuNaNwkhmrZSWMir63omOkU4MTIzgRqn5Gp0ddKecHhcos9r7YuopOkJaiqL9QDvR8xprJA-oyamUDE5NuT6XnxQl6sVhtVMfHFYvDivCVXW4zv54W6OL0cFlHY0v7wKMSc5aISq3PXBQf_7vIatiPEQD1mcws7LJf2LbM88cmbo</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Huang, C.-S.</creator><creator>Yen, H.-D.</creator><creator>Cheng, A.H.-D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs</title><author>Huang, C.-S. ; Yen, H.-D. ; Cheng, A.H.-D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-ee1496ded9b0ddaf887d394cb55fcf4fb8c92dd99d121866f852058728befb9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arbitrary precision computation</topic><topic>Boundary element method</topic><topic>Constraining</topic><topic>Error estimate</topic><topic>Exact sciences and technology</topic><topic>Flattening</topic><topic>Increasingly flat radial basis function</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Meshless method</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Multiquadric collocation method</topic><topic>Numerical analysis. Scientific computation</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Radial basis function</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, C.-S.</creatorcontrib><creatorcontrib>Yen, H.-D.</creatorcontrib><creatorcontrib>Cheng, A.H.-D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, C.-S.</au><au>Yen, H.-D.</au><au>Cheng, A.H.-D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>34</volume><issue>9</issue><spage>802</spage><epage>809</epage><pages>802-809</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>For the interpolation of continuous functions and the solution of partial differential equation (PDE) by radial basis function (RBF) collocation, it has been observed that solution becomes increasingly more accurate as the shape of the RBF is flattened by the adjustment of a shape parameter. In the case of interpolation of continuous functions, it has been proven that in the limit of increasingly flat RBF, the interpolant reduces to Lagrangian polynomials. Does this limiting behavior implies that RBFs can perform no better than Lagrangian polynomials in the interpolation of a function, as well as in the solution of PDE? In this paper, arbitrary precision computation is used to test these and other conjectures. It is found that RBF in fact performs better than polynomials, as the optimal shape parameter exists not in the limit, but at a finite value.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2010.03.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2010-09, Vol.34 (9), p.802-809
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_1671586386
source Elsevier ScienceDirect Journals
subjects Arbitrary precision computation
Boundary element method
Constraining
Error estimate
Exact sciences and technology
Flattening
Increasingly flat radial basis function
Interpolation
Mathematical analysis
Mathematical models
Mathematics
Meshless method
Methods of scientific computing (including symbolic computation, algebraic computation)
Multiquadric collocation method
Numerical analysis. Scientific computation
Optimization
Partial differential equations
Radial basis function
Sciences and techniques of general use
title On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20increasingly%20flat%20radial%20basis%20function%20and%20optimal%20shape%20parameter%20for%20the%20solution%20of%20elliptic%20PDEs&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Huang,%20C.-S.&rft.date=2010-09-01&rft.volume=34&rft.issue=9&rft.spage=802&rft.epage=809&rft.pages=802-809&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2010.03.002&rft_dat=%3Cproquest_cross%3E1671586386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671586386&rft_id=info:pmid/&rft_els_id=S0955799710000640&rfr_iscdi=true