Extended Kalman Filter framework for forecasting shoreline evolution
A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the as...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2012-07, Vol.39 (13), p.np-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | np |
container_title | Geophysical research letters |
container_volume | 39 |
creator | Long, Joseph W. Plant, Nathaniel G. |
description | A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model‐data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non‐observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).
Key Points
Method can separate short and long term scales of shoreline change
Model free parameters are dynamically estimated
Uncertainty of shoreline forecasts including model and data input are quantified |
doi_str_mv | 10.1029/2012GL052180 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671580960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1529950520</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4735-974d780e54f595bb3101416523f6d8d5408c098910b1685711422ae935753b1b3</originalsourceid><addsrcrecordid>eNqFkMtKxEAQRRtRcHzs_IBsBBdGq_qZXvqaURwURHHZdJKOtvYk2p3x8fdmGBFXuiiqCs69i0PIDsIBAtWHFJBOpiAoFrBCRqg5zwsAtUpGAHq4qZLrZCOlJwBgwHBETs8-etfWrs4ubZjZNhv70LuYNdHO3HsXn7Omi4txlU29bx-y9Dg8wbcuc29dmPe-a7fIWmNDctvfe5Pcjc9uT87z6fXk4uRomluumMi14rUqwAneCC3KkiEgRykoa2Rd1IJDUYEuNEKJshAKkVNqnWZCCVZiyTbJ3rL3JXavc5d6M_OpciHY1nXzZFAqFAVoCf-jgmotBlULdH-JVrFLKbrGvEQ_s_HTIJiFV_Pb64DvfjfbVNkwiGorn34yVDLJAOTA0SX37oP7_LPTTG6mVDMqhlC-DPnUu4-fkI3PRiqmhLm_mpjTY3ZzP2bcCPYFjn-R9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529950520</pqid></control><display><type>article</type><title>Extended Kalman Filter framework for forecasting shoreline evolution</title><source>Wiley Online Library</source><source>Wiley Free Archive</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Long, Joseph W. ; Plant, Nathaniel G.</creator><creatorcontrib>Long, Joseph W. ; Plant, Nathaniel G.</creatorcontrib><description>A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model‐data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non‐observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).
Key Points
Method can separate short and long term scales of shoreline change
Model free parameters are dynamically estimated
Uncertainty of shoreline forecasts including model and data input are quantified</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2012GL052180</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Assessments ; Data assimilation ; Earth sciences ; Earth, ocean, space ; Estimates ; Evolution ; Exact sciences and technology ; extended Kalman Filter ; Geophysics ; Mathematical models ; shoreline ; Shorelines ; Uncertainty</subject><ispartof>Geophysical research letters, 2012-07, Vol.39 (13), p.np-n/a</ispartof><rights>This paper is not subject to U.S. copyright. Published in 2012 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4735-974d780e54f595bb3101416523f6d8d5408c098910b1685711422ae935753b1b3</citedby><cites>FETCH-LOGICAL-a4735-974d780e54f595bb3101416523f6d8d5408c098910b1685711422ae935753b1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012GL052180$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012GL052180$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363006$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Joseph W.</creatorcontrib><creatorcontrib>Plant, Nathaniel G.</creatorcontrib><title>Extended Kalman Filter framework for forecasting shoreline evolution</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model‐data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non‐observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).
Key Points
Method can separate short and long term scales of shoreline change
Model free parameters are dynamically estimated
Uncertainty of shoreline forecasts including model and data input are quantified</description><subject>Assessments</subject><subject>Data assimilation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Estimates</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>extended Kalman Filter</subject><subject>Geophysics</subject><subject>Mathematical models</subject><subject>shoreline</subject><subject>Shorelines</subject><subject>Uncertainty</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxEAQRRtRcHzs_IBsBBdGq_qZXvqaURwURHHZdJKOtvYk2p3x8fdmGBFXuiiqCs69i0PIDsIBAtWHFJBOpiAoFrBCRqg5zwsAtUpGAHq4qZLrZCOlJwBgwHBETs8-etfWrs4ubZjZNhv70LuYNdHO3HsXn7Omi4txlU29bx-y9Dg8wbcuc29dmPe-a7fIWmNDctvfe5Pcjc9uT87z6fXk4uRomluumMi14rUqwAneCC3KkiEgRykoa2Rd1IJDUYEuNEKJshAKkVNqnWZCCVZiyTbJ3rL3JXavc5d6M_OpciHY1nXzZFAqFAVoCf-jgmotBlULdH-JVrFLKbrGvEQ_s_HTIJiFV_Pb64DvfjfbVNkwiGorn34yVDLJAOTA0SX37oP7_LPTTG6mVDMqhlC-DPnUu4-fkI3PRiqmhLm_mpjTY3ZzP2bcCPYFjn-R9A</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Long, Joseph W.</creator><creator>Plant, Nathaniel G.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201207</creationdate><title>Extended Kalman Filter framework for forecasting shoreline evolution</title><author>Long, Joseph W. ; Plant, Nathaniel G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4735-974d780e54f595bb3101416523f6d8d5408c098910b1685711422ae935753b1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Assessments</topic><topic>Data assimilation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Estimates</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>extended Kalman Filter</topic><topic>Geophysics</topic><topic>Mathematical models</topic><topic>shoreline</topic><topic>Shorelines</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Joseph W.</creatorcontrib><creatorcontrib>Plant, Nathaniel G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Joseph W.</au><au>Plant, Nathaniel G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Kalman Filter framework for forecasting shoreline evolution</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2012-07</date><risdate>2012</risdate><volume>39</volume><issue>13</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model‐data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non‐observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).
Key Points
Method can separate short and long term scales of shoreline change
Model free parameters are dynamically estimated
Uncertainty of shoreline forecasts including model and data input are quantified</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012GL052180</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2012-07, Vol.39 (13), p.np-n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671580960 |
source | Wiley Online Library; Wiley Free Archive; Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library |
subjects | Assessments Data assimilation Earth sciences Earth, ocean, space Estimates Evolution Exact sciences and technology extended Kalman Filter Geophysics Mathematical models shoreline Shorelines Uncertainty |
title | Extended Kalman Filter framework for forecasting shoreline evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Kalman%20Filter%20framework%20for%20forecasting%20shoreline%20evolution&rft.jtitle=Geophysical%20research%20letters&rft.au=Long,%20Joseph%20W.&rft.date=2012-07&rft.volume=39&rft.issue=13&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2012GL052180&rft_dat=%3Cproquest_cross%3E1529950520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529950520&rft_id=info:pmid/&rfr_iscdi=true |