Extended Kalman Filter framework for forecasting shoreline evolution

A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2012-07, Vol.39 (13), p.np-n/a
Hauptverfasser: Long, Joseph W., Plant, Nathaniel G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page np
container_title Geophysical research letters
container_volume 39
creator Long, Joseph W.
Plant, Nathaniel G.
description A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model‐data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non‐observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position). Key Points Method can separate short and long term scales of shoreline change Model free parameters are dynamically estimated Uncertainty of shoreline forecasts including model and data input are quantified
doi_str_mv 10.1029/2012GL052180
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671580960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1529950520</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4735-974d780e54f595bb3101416523f6d8d5408c098910b1685711422ae935753b1b3</originalsourceid><addsrcrecordid>eNqFkMtKxEAQRRtRcHzs_IBsBBdGq_qZXvqaURwURHHZdJKOtvYk2p3x8fdmGBFXuiiqCs69i0PIDsIBAtWHFJBOpiAoFrBCRqg5zwsAtUpGAHq4qZLrZCOlJwBgwHBETs8-etfWrs4ubZjZNhv70LuYNdHO3HsXn7Omi4txlU29bx-y9Dg8wbcuc29dmPe-a7fIWmNDctvfe5Pcjc9uT87z6fXk4uRomluumMi14rUqwAneCC3KkiEgRykoa2Rd1IJDUYEuNEKJshAKkVNqnWZCCVZiyTbJ3rL3JXavc5d6M_OpciHY1nXzZFAqFAVoCf-jgmotBlULdH-JVrFLKbrGvEQ_s_HTIJiFV_Pb64DvfjfbVNkwiGorn34yVDLJAOTA0SX37oP7_LPTTG6mVDMqhlC-DPnUu4-fkI3PRiqmhLm_mpjTY3ZzP2bcCPYFjn-R9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529950520</pqid></control><display><type>article</type><title>Extended Kalman Filter framework for forecasting shoreline evolution</title><source>Wiley Online Library</source><source>Wiley Free Archive</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Long, Joseph W. ; Plant, Nathaniel G.</creator><creatorcontrib>Long, Joseph W. ; Plant, Nathaniel G.</creatorcontrib><description>A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model‐data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non‐observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position). Key Points Method can separate short and long term scales of shoreline change Model free parameters are dynamically estimated Uncertainty of shoreline forecasts including model and data input are quantified</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2012GL052180</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Assessments ; Data assimilation ; Earth sciences ; Earth, ocean, space ; Estimates ; Evolution ; Exact sciences and technology ; extended Kalman Filter ; Geophysics ; Mathematical models ; shoreline ; Shorelines ; Uncertainty</subject><ispartof>Geophysical research letters, 2012-07, Vol.39 (13), p.np-n/a</ispartof><rights>This paper is not subject to U.S. copyright. Published in 2012 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4735-974d780e54f595bb3101416523f6d8d5408c098910b1685711422ae935753b1b3</citedby><cites>FETCH-LOGICAL-a4735-974d780e54f595bb3101416523f6d8d5408c098910b1685711422ae935753b1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012GL052180$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012GL052180$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26363006$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Joseph W.</creatorcontrib><creatorcontrib>Plant, Nathaniel G.</creatorcontrib><title>Extended Kalman Filter framework for forecasting shoreline evolution</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model‐data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non‐observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position). Key Points Method can separate short and long term scales of shoreline change Model free parameters are dynamically estimated Uncertainty of shoreline forecasts including model and data input are quantified</description><subject>Assessments</subject><subject>Data assimilation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Estimates</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>extended Kalman Filter</subject><subject>Geophysics</subject><subject>Mathematical models</subject><subject>shoreline</subject><subject>Shorelines</subject><subject>Uncertainty</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxEAQRRtRcHzs_IBsBBdGq_qZXvqaURwURHHZdJKOtvYk2p3x8fdmGBFXuiiqCs69i0PIDsIBAtWHFJBOpiAoFrBCRqg5zwsAtUpGAHq4qZLrZCOlJwBgwHBETs8-etfWrs4ubZjZNhv70LuYNdHO3HsXn7Omi4txlU29bx-y9Dg8wbcuc29dmPe-a7fIWmNDctvfe5Pcjc9uT87z6fXk4uRomluumMi14rUqwAneCC3KkiEgRykoa2Rd1IJDUYEuNEKJshAKkVNqnWZCCVZiyTbJ3rL3JXavc5d6M_OpciHY1nXzZFAqFAVoCf-jgmotBlULdH-JVrFLKbrGvEQ_s_HTIJiFV_Pb64DvfjfbVNkwiGorn34yVDLJAOTA0SX37oP7_LPTTG6mVDMqhlC-DPnUu4-fkI3PRiqmhLm_mpjTY3ZzP2bcCPYFjn-R9A</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Long, Joseph W.</creator><creator>Plant, Nathaniel G.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201207</creationdate><title>Extended Kalman Filter framework for forecasting shoreline evolution</title><author>Long, Joseph W. ; Plant, Nathaniel G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4735-974d780e54f595bb3101416523f6d8d5408c098910b1685711422ae935753b1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Assessments</topic><topic>Data assimilation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Estimates</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>extended Kalman Filter</topic><topic>Geophysics</topic><topic>Mathematical models</topic><topic>shoreline</topic><topic>Shorelines</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Joseph W.</creatorcontrib><creatorcontrib>Plant, Nathaniel G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Joseph W.</au><au>Plant, Nathaniel G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Kalman Filter framework for forecasting shoreline evolution</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2012-07</date><risdate>2012</risdate><volume>39</volume><issue>13</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>A shoreline change model incorporating both long‐ and short‐term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model‐data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non‐observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position). Key Points Method can separate short and long term scales of shoreline change Model free parameters are dynamically estimated Uncertainty of shoreline forecasts including model and data input are quantified</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012GL052180</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2012-07, Vol.39 (13), p.np-n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1671580960
source Wiley Online Library; Wiley Free Archive; Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library
subjects Assessments
Data assimilation
Earth sciences
Earth, ocean, space
Estimates
Evolution
Exact sciences and technology
extended Kalman Filter
Geophysics
Mathematical models
shoreline
Shorelines
Uncertainty
title Extended Kalman Filter framework for forecasting shoreline evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Kalman%20Filter%20framework%20for%20forecasting%20shoreline%20evolution&rft.jtitle=Geophysical%20research%20letters&rft.au=Long,%20Joseph%20W.&rft.date=2012-07&rft.volume=39&rft.issue=13&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2012GL052180&rft_dat=%3Cproquest_cross%3E1529950520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529950520&rft_id=info:pmid/&rfr_iscdi=true