Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2014-05, Vol.39 (16), p.8410-8420
Hauptverfasser: Liso, Vincenzo, Nielsen, Mads Pagh, Kær, Søren Knudsen, Mortensen, Henrik H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8420
container_issue 16
container_start_page 8410
container_title International journal of hydrogen energy
container_volume 39
creator Liso, Vincenzo
Nielsen, Mads Pagh
Kær, Søren Knudsen
Mortensen, Henrik H.
description Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control-oriented dynamic model of a liquid-cooled PEM fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling. The stack energy balance was reduced to a first order differential equation using a lumped approach. The first-order Linear Time-Invariant system was used to obtain the transfer function which was determined based on experimental data at different stack loads. The developed model approach can assist designers in choosing the required coolant mass flow rate and radiator size to minimize the stack temperature gradients.
doi_str_mv 10.1016/j.ijhydene.2014.03.175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671580322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319914008672</els_id><sourcerecordid>1671580322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-247b51890c8710b29a1804a64d1ad93c6de719aff13404f88d50160270668dd83</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS1EJZaWv4B8QeKSMBN7HecGqlpAKoJDe6tkufaYenHiYGeR9t-TZQtXDqO5vDdv3sfYa4QWAdW7XRt3jwdPE7UdoGxBtNhvn7EN6n5ohNT9c7YBoaAROAwv2MtadwDYgxw27P72kcpoEx-zpxSn79xOni80zlTssi_EXZ6WkhPPgVv-7eoLD3tK3FFKvB7qquQhl-P8SDEs3M5zis4uMU_1gp0Fmyq9etrn7O766vbyU3Pz9ePnyw83jZOolqaT_cMW9QBO9wgP3WBRg7RKerR-EE556nGwIaCQIIPWfrv2hq4HpbT3Wpyzt6e7c8k_91QXM8Z6_NBOlPfVoOpxq0F03SpVJ6krudZCwcwljrYcDII54jQ78xenOeI0IMyKczW-ecqw1dkUip1crP_cnZZayD8B7086Wgv_ilRMdZEmRz4WcovxOf4v6jdEXY44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671580322</pqid></control><display><type>article</type><title>Thermal modeling and temperature control of a PEM fuel cell system for forklift applications</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Liso, Vincenzo ; Nielsen, Mads Pagh ; Kær, Søren Knudsen ; Mortensen, Henrik H.</creator><creatorcontrib>Liso, Vincenzo ; Nielsen, Mads Pagh ; Kær, Søren Knudsen ; Mortensen, Henrik H.</creatorcontrib><description>Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control-oriented dynamic model of a liquid-cooled PEM fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling. The stack energy balance was reduced to a first order differential equation using a lumped approach. The first-order Linear Time-Invariant system was used to obtain the transfer function which was determined based on experimental data at different stack loads. The developed model approach can assist designers in choosing the required coolant mass flow rate and radiator size to minimize the stack temperature gradients.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2014.03.175</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Control systems ; Degradation ; Dynamic simulation ; Dynamical systems ; Dynamics ; Energy ; Exact sciences and technology ; Fork lift trucks ; Fuel cells ; Fuels ; Hydration ; Hydrogen ; PEMFC ; Stacks ; System modeling and control</subject><ispartof>International journal of hydrogen energy, 2014-05, Vol.39 (16), p.8410-8420</ispartof><rights>2014 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-247b51890c8710b29a1804a64d1ad93c6de719aff13404f88d50160270668dd83</citedby><cites>FETCH-LOGICAL-c416t-247b51890c8710b29a1804a64d1ad93c6de719aff13404f88d50160270668dd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319914008672$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28483422$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liso, Vincenzo</creatorcontrib><creatorcontrib>Nielsen, Mads Pagh</creatorcontrib><creatorcontrib>Kær, Søren Knudsen</creatorcontrib><creatorcontrib>Mortensen, Henrik H.</creatorcontrib><title>Thermal modeling and temperature control of a PEM fuel cell system for forklift applications</title><title>International journal of hydrogen energy</title><description>Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control-oriented dynamic model of a liquid-cooled PEM fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling. The stack energy balance was reduced to a first order differential equation using a lumped approach. The first-order Linear Time-Invariant system was used to obtain the transfer function which was determined based on experimental data at different stack loads. The developed model approach can assist designers in choosing the required coolant mass flow rate and radiator size to minimize the stack temperature gradients.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Control systems</subject><subject>Degradation</subject><subject>Dynamic simulation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fork lift trucks</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Hydration</subject><subject>Hydrogen</subject><subject>PEMFC</subject><subject>Stacks</subject><subject>System modeling and control</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS1EJZaWv4B8QeKSMBN7HecGqlpAKoJDe6tkufaYenHiYGeR9t-TZQtXDqO5vDdv3sfYa4QWAdW7XRt3jwdPE7UdoGxBtNhvn7EN6n5ohNT9c7YBoaAROAwv2MtadwDYgxw27P72kcpoEx-zpxSn79xOni80zlTssi_EXZ6WkhPPgVv-7eoLD3tK3FFKvB7qquQhl-P8SDEs3M5zis4uMU_1gp0Fmyq9etrn7O766vbyU3Pz9ePnyw83jZOolqaT_cMW9QBO9wgP3WBRg7RKerR-EE556nGwIaCQIIPWfrv2hq4HpbT3Wpyzt6e7c8k_91QXM8Z6_NBOlPfVoOpxq0F03SpVJ6krudZCwcwljrYcDII54jQ78xenOeI0IMyKczW-ecqw1dkUip1crP_cnZZayD8B7086Wgv_ilRMdZEmRz4WcovxOf4v6jdEXY44</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Liso, Vincenzo</creator><creator>Nielsen, Mads Pagh</creator><creator>Kær, Søren Knudsen</creator><creator>Mortensen, Henrik H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140527</creationdate><title>Thermal modeling and temperature control of a PEM fuel cell system for forklift applications</title><author>Liso, Vincenzo ; Nielsen, Mads Pagh ; Kær, Søren Knudsen ; Mortensen, Henrik H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-247b51890c8710b29a1804a64d1ad93c6de719aff13404f88d50160270668dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Control systems</topic><topic>Degradation</topic><topic>Dynamic simulation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fork lift trucks</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Hydration</topic><topic>Hydrogen</topic><topic>PEMFC</topic><topic>Stacks</topic><topic>System modeling and control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liso, Vincenzo</creatorcontrib><creatorcontrib>Nielsen, Mads Pagh</creatorcontrib><creatorcontrib>Kær, Søren Knudsen</creatorcontrib><creatorcontrib>Mortensen, Henrik H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liso, Vincenzo</au><au>Nielsen, Mads Pagh</au><au>Kær, Søren Knudsen</au><au>Mortensen, Henrik H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal modeling and temperature control of a PEM fuel cell system for forklift applications</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-05-27</date><risdate>2014</risdate><volume>39</volume><issue>16</issue><spage>8410</spage><epage>8420</epage><pages>8410-8420</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control-oriented dynamic model of a liquid-cooled PEM fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling. The stack energy balance was reduced to a first order differential equation using a lumped approach. The first-order Linear Time-Invariant system was used to obtain the transfer function which was determined based on experimental data at different stack loads. The developed model approach can assist designers in choosing the required coolant mass flow rate and radiator size to minimize the stack temperature gradients.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2014.03.175</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2014-05, Vol.39 (16), p.8410-8420
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1671580322
source Elsevier ScienceDirect Journals Collection
subjects Alternative fuels. Production and utilization
Applied sciences
Control systems
Degradation
Dynamic simulation
Dynamical systems
Dynamics
Energy
Exact sciences and technology
Fork lift trucks
Fuel cells
Fuels
Hydration
Hydrogen
PEMFC
Stacks
System modeling and control
title Thermal modeling and temperature control of a PEM fuel cell system for forklift applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20modeling%20and%20temperature%20control%20of%20a%20PEM%20fuel%20cell%20system%20for%20forklift%20applications&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Liso,%20Vincenzo&rft.date=2014-05-27&rft.volume=39&rft.issue=16&rft.spage=8410&rft.epage=8420&rft.pages=8410-8420&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2014.03.175&rft_dat=%3Cproquest_cross%3E1671580322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671580322&rft_id=info:pmid/&rft_els_id=S0360319914008672&rfr_iscdi=true