Thermal modeling and temperature control of a PEM fuel cell system for forklift applications
Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2014-05, Vol.39 (16), p.8410-8420 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8420 |
---|---|
container_issue | 16 |
container_start_page | 8410 |
container_title | International journal of hydrogen energy |
container_volume | 39 |
creator | Liso, Vincenzo Nielsen, Mads Pagh Kær, Søren Knudsen Mortensen, Henrik H. |
description | Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts.
In this paper we present a control-oriented dynamic model of a liquid-cooled PEM fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling.
The stack energy balance was reduced to a first order differential equation using a lumped approach. The first-order Linear Time-Invariant system was used to obtain the transfer function which was determined based on experimental data at different stack loads. The developed model approach can assist designers in choosing the required coolant mass flow rate and radiator size to minimize the stack temperature gradients. |
doi_str_mv | 10.1016/j.ijhydene.2014.03.175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671580322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319914008672</els_id><sourcerecordid>1671580322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-247b51890c8710b29a1804a64d1ad93c6de719aff13404f88d50160270668dd83</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS1EJZaWv4B8QeKSMBN7HecGqlpAKoJDe6tkufaYenHiYGeR9t-TZQtXDqO5vDdv3sfYa4QWAdW7XRt3jwdPE7UdoGxBtNhvn7EN6n5ohNT9c7YBoaAROAwv2MtadwDYgxw27P72kcpoEx-zpxSn79xOni80zlTssi_EXZ6WkhPPgVv-7eoLD3tK3FFKvB7qquQhl-P8SDEs3M5zis4uMU_1gp0Fmyq9etrn7O766vbyU3Pz9ePnyw83jZOolqaT_cMW9QBO9wgP3WBRg7RKerR-EE556nGwIaCQIIPWfrv2hq4HpbT3Wpyzt6e7c8k_91QXM8Z6_NBOlPfVoOpxq0F03SpVJ6krudZCwcwljrYcDII54jQ78xenOeI0IMyKczW-ecqw1dkUip1crP_cnZZayD8B7086Wgv_ilRMdZEmRz4WcovxOf4v6jdEXY44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671580322</pqid></control><display><type>article</type><title>Thermal modeling and temperature control of a PEM fuel cell system for forklift applications</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Liso, Vincenzo ; Nielsen, Mads Pagh ; Kær, Søren Knudsen ; Mortensen, Henrik H.</creator><creatorcontrib>Liso, Vincenzo ; Nielsen, Mads Pagh ; Kær, Søren Knudsen ; Mortensen, Henrik H.</creatorcontrib><description>Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts.
In this paper we present a control-oriented dynamic model of a liquid-cooled PEM fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling.
The stack energy balance was reduced to a first order differential equation using a lumped approach. The first-order Linear Time-Invariant system was used to obtain the transfer function which was determined based on experimental data at different stack loads. The developed model approach can assist designers in choosing the required coolant mass flow rate and radiator size to minimize the stack temperature gradients.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2014.03.175</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Control systems ; Degradation ; Dynamic simulation ; Dynamical systems ; Dynamics ; Energy ; Exact sciences and technology ; Fork lift trucks ; Fuel cells ; Fuels ; Hydration ; Hydrogen ; PEMFC ; Stacks ; System modeling and control</subject><ispartof>International journal of hydrogen energy, 2014-05, Vol.39 (16), p.8410-8420</ispartof><rights>2014 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-247b51890c8710b29a1804a64d1ad93c6de719aff13404f88d50160270668dd83</citedby><cites>FETCH-LOGICAL-c416t-247b51890c8710b29a1804a64d1ad93c6de719aff13404f88d50160270668dd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319914008672$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28483422$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liso, Vincenzo</creatorcontrib><creatorcontrib>Nielsen, Mads Pagh</creatorcontrib><creatorcontrib>Kær, Søren Knudsen</creatorcontrib><creatorcontrib>Mortensen, Henrik H.</creatorcontrib><title>Thermal modeling and temperature control of a PEM fuel cell system for forklift applications</title><title>International journal of hydrogen energy</title><description>Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts.
In this paper we present a control-oriented dynamic model of a liquid-cooled PEM fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling.
The stack energy balance was reduced to a first order differential equation using a lumped approach. The first-order Linear Time-Invariant system was used to obtain the transfer function which was determined based on experimental data at different stack loads. The developed model approach can assist designers in choosing the required coolant mass flow rate and radiator size to minimize the stack temperature gradients.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Control systems</subject><subject>Degradation</subject><subject>Dynamic simulation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fork lift trucks</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Hydration</subject><subject>Hydrogen</subject><subject>PEMFC</subject><subject>Stacks</subject><subject>System modeling and control</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS1EJZaWv4B8QeKSMBN7HecGqlpAKoJDe6tkufaYenHiYGeR9t-TZQtXDqO5vDdv3sfYa4QWAdW7XRt3jwdPE7UdoGxBtNhvn7EN6n5ohNT9c7YBoaAROAwv2MtadwDYgxw27P72kcpoEx-zpxSn79xOni80zlTssi_EXZ6WkhPPgVv-7eoLD3tK3FFKvB7qquQhl-P8SDEs3M5zis4uMU_1gp0Fmyq9etrn7O766vbyU3Pz9ePnyw83jZOolqaT_cMW9QBO9wgP3WBRg7RKerR-EE556nGwIaCQIIPWfrv2hq4HpbT3Wpyzt6e7c8k_91QXM8Z6_NBOlPfVoOpxq0F03SpVJ6krudZCwcwljrYcDII54jQ78xenOeI0IMyKczW-ecqw1dkUip1crP_cnZZayD8B7086Wgv_ilRMdZEmRz4WcovxOf4v6jdEXY44</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Liso, Vincenzo</creator><creator>Nielsen, Mads Pagh</creator><creator>Kær, Søren Knudsen</creator><creator>Mortensen, Henrik H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140527</creationdate><title>Thermal modeling and temperature control of a PEM fuel cell system for forklift applications</title><author>Liso, Vincenzo ; Nielsen, Mads Pagh ; Kær, Søren Knudsen ; Mortensen, Henrik H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-247b51890c8710b29a1804a64d1ad93c6de719aff13404f88d50160270668dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Control systems</topic><topic>Degradation</topic><topic>Dynamic simulation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fork lift trucks</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Hydration</topic><topic>Hydrogen</topic><topic>PEMFC</topic><topic>Stacks</topic><topic>System modeling and control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liso, Vincenzo</creatorcontrib><creatorcontrib>Nielsen, Mads Pagh</creatorcontrib><creatorcontrib>Kær, Søren Knudsen</creatorcontrib><creatorcontrib>Mortensen, Henrik H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liso, Vincenzo</au><au>Nielsen, Mads Pagh</au><au>Kær, Søren Knudsen</au><au>Mortensen, Henrik H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal modeling and temperature control of a PEM fuel cell system for forklift applications</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-05-27</date><risdate>2014</risdate><volume>39</volume><issue>16</issue><spage>8410</spage><epage>8420</epage><pages>8410-8420</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature. A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts.
In this paper we present a control-oriented dynamic model of a liquid-cooled PEM fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling.
The stack energy balance was reduced to a first order differential equation using a lumped approach. The first-order Linear Time-Invariant system was used to obtain the transfer function which was determined based on experimental data at different stack loads. The developed model approach can assist designers in choosing the required coolant mass flow rate and radiator size to minimize the stack temperature gradients.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2014.03.175</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2014-05, Vol.39 (16), p.8410-8420 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671580322 |
source | Elsevier ScienceDirect Journals Collection |
subjects | Alternative fuels. Production and utilization Applied sciences Control systems Degradation Dynamic simulation Dynamical systems Dynamics Energy Exact sciences and technology Fork lift trucks Fuel cells Fuels Hydration Hydrogen PEMFC Stacks System modeling and control |
title | Thermal modeling and temperature control of a PEM fuel cell system for forklift applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20modeling%20and%20temperature%20control%20of%20a%20PEM%20fuel%20cell%20system%20for%20forklift%20applications&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Liso,%20Vincenzo&rft.date=2014-05-27&rft.volume=39&rft.issue=16&rft.spage=8410&rft.epage=8420&rft.pages=8410-8420&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2014.03.175&rft_dat=%3Cproquest_cross%3E1671580322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671580322&rft_id=info:pmid/&rft_els_id=S0360319914008672&rfr_iscdi=true |