GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation

Spatial Monte Carlo Analysis (SMCA) is a newly developed Multi-Criteria Decision Making (MCDM) technique based on Spatial Compromise Programming (SCP) and Monte Carlo Simulation (MCS) technique. In contrast to other conventional MCDM techniques, SMCA has the ability to address uneven spatial distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2013-08, Vol.27 (10), p.3631-3645
Hauptverfasser: Qi, Honghai, Qi, Pu, Altinakar, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3645
container_issue 10
container_start_page 3631
container_title Water resources management
container_volume 27
creator Qi, Honghai
Qi, Pu
Altinakar, M. S.
description Spatial Monte Carlo Analysis (SMCA) is a newly developed Multi-Criteria Decision Making (MCDM) technique based on Spatial Compromise Programming (SCP) and Monte Carlo Simulation (MCS) technique. In contrast to other conventional MCDM techniques, SMCA has the ability to address uneven spatial distribution of criteria values in the evaluation and ranking of alternatives under various uncertainties. Using this technique, a new flood management tool has been developed within the framework of widely used GIS software ArcGIS. This tool has a user friendly interface which allows construction of user defined criteria, running of SCP computations under uncertain impacting factors and visualization of results. This tool has also the ability to interact with and use of classified Remote Sensing (RS) image layers, and other GIS feature layers like census block boundaries for flood damage calculation and loss of life estimation. The 100-year flood management strategy for Oconee River near the City of Milledgeville, Georgia, USA is chosen as a case study to demonstrate the capabilities of the software. The test result indicates that this new SMCA tool provides a very versatile environment for spatial comparison of various flood mitigation alternatives by taking into account various uncertainties, which will greatly enhance the quality of the decision making process. This tool can also be easily modified and implemented for solving a large variety of problems related to natural resources planning and management.
doi_str_mv 10.1007/s11269-013-0370-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671580244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014641011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-74a278c70748163d84d6bd042d541db3b705e908c440bbb955decdcdf936c2503</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxRtRcFz9AN4CIniJVv6nj-usuw7s4mHWc0gn6TFLpjMmPSz77U0zg4ggnoqq-r1HFa_r3hL4SADUp0oIlT0GwjAwBVg_61ZEKIaJFPC8W0FPAXPFycvuVa0PAE3Vw6pLN5st_mxr8Gh7sHO0Cd3laQ5obUvK6HKy6anGisZc0KbNd8XOjb1OOXt0Zye7C_swzegxzj_Q_WNGV7H1NeYmPFPbuD-mZp2n192L0aYa3pzrRff9-sv9-iu-_XazWV_eYscJnbHilirtFCiuiWRecy8HD5x6wYkf2KBAhB604xyGYeiF8MF558eeSUcFsIvuw8n3UPLPY6iz2cfqQkp2CvlYDZGKCA2U8_-j7SIhGdML-u4v9CEfS_uzUazXkjAtdaPIiXIl11rCaA4l7m15MgTMEpU5RWVaVGaJyiya92dnW51NY7GTi_W3kCpJeqaXv-iJq2017UL544J_mv8Ce1ChrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398613868</pqid></control><display><type>article</type><title>GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qi, Honghai ; Qi, Pu ; Altinakar, M. S.</creator><creatorcontrib>Qi, Honghai ; Qi, Pu ; Altinakar, M. S.</creatorcontrib><description>Spatial Monte Carlo Analysis (SMCA) is a newly developed Multi-Criteria Decision Making (MCDM) technique based on Spatial Compromise Programming (SCP) and Monte Carlo Simulation (MCS) technique. In contrast to other conventional MCDM techniques, SMCA has the ability to address uneven spatial distribution of criteria values in the evaluation and ranking of alternatives under various uncertainties. Using this technique, a new flood management tool has been developed within the framework of widely used GIS software ArcGIS. This tool has a user friendly interface which allows construction of user defined criteria, running of SCP computations under uncertain impacting factors and visualization of results. This tool has also the ability to interact with and use of classified Remote Sensing (RS) image layers, and other GIS feature layers like census block boundaries for flood damage calculation and loss of life estimation. The 100-year flood management strategy for Oconee River near the City of Milledgeville, Georgia, USA is chosen as a case study to demonstrate the capabilities of the software. The test result indicates that this new SMCA tool provides a very versatile environment for spatial comparison of various flood mitigation alternatives by taking into account various uncertainties, which will greatly enhance the quality of the decision making process. This tool can also be easily modified and implemented for solving a large variety of problems related to natural resources planning and management.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-013-0370-8</identifier><identifier>CODEN: WRMAEJ</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Sciences ; Case studies ; Censuses ; Civil Engineering ; Computer programs ; Computer simulation ; Construction ; Decision making ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environment ; Exact sciences and technology ; Expected values ; Flood control ; Flood damage ; Flood management ; Floods ; Freshwater ; Geographic information systems ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Management decisions ; Mathematical programming ; Monte Carlo methods ; Monte Carlo simulation ; Multiple criteria decision making ; Natural hazards: prediction, damages, etc ; Natural resources ; Preferences ; Remote sensing ; Resource management ; Software ; Spatial analysis ; Spatial distribution ; Studies ; Water resources ; Water resources management</subject><ispartof>Water resources management, 2013-08, Vol.27 (10), p.3631-3645</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-74a278c70748163d84d6bd042d541db3b705e908c440bbb955decdcdf936c2503</citedby><cites>FETCH-LOGICAL-c412t-74a278c70748163d84d6bd042d541db3b705e908c440bbb955decdcdf936c2503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-013-0370-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-013-0370-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27619380$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Honghai</creatorcontrib><creatorcontrib>Qi, Pu</creatorcontrib><creatorcontrib>Altinakar, M. S.</creatorcontrib><title>GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Spatial Monte Carlo Analysis (SMCA) is a newly developed Multi-Criteria Decision Making (MCDM) technique based on Spatial Compromise Programming (SCP) and Monte Carlo Simulation (MCS) technique. In contrast to other conventional MCDM techniques, SMCA has the ability to address uneven spatial distribution of criteria values in the evaluation and ranking of alternatives under various uncertainties. Using this technique, a new flood management tool has been developed within the framework of widely used GIS software ArcGIS. This tool has a user friendly interface which allows construction of user defined criteria, running of SCP computations under uncertain impacting factors and visualization of results. This tool has also the ability to interact with and use of classified Remote Sensing (RS) image layers, and other GIS feature layers like census block boundaries for flood damage calculation and loss of life estimation. The 100-year flood management strategy for Oconee River near the City of Milledgeville, Georgia, USA is chosen as a case study to demonstrate the capabilities of the software. The test result indicates that this new SMCA tool provides a very versatile environment for spatial comparison of various flood mitigation alternatives by taking into account various uncertainties, which will greatly enhance the quality of the decision making process. This tool can also be easily modified and implemented for solving a large variety of problems related to natural resources planning and management.</description><subject>Atmospheric Sciences</subject><subject>Case studies</subject><subject>Censuses</subject><subject>Civil Engineering</subject><subject>Computer programs</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Decision making</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environment</subject><subject>Exact sciences and technology</subject><subject>Expected values</subject><subject>Flood control</subject><subject>Flood damage</subject><subject>Flood management</subject><subject>Floods</subject><subject>Freshwater</subject><subject>Geographic information systems</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Management decisions</subject><subject>Mathematical programming</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Multiple criteria decision making</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Natural resources</subject><subject>Preferences</subject><subject>Remote sensing</subject><subject>Resource management</subject><subject>Software</subject><subject>Spatial analysis</subject><subject>Spatial distribution</subject><subject>Studies</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU-LFDEQxRtRcFz9AN4CIniJVv6nj-usuw7s4mHWc0gn6TFLpjMmPSz77U0zg4ggnoqq-r1HFa_r3hL4SADUp0oIlT0GwjAwBVg_61ZEKIaJFPC8W0FPAXPFycvuVa0PAE3Vw6pLN5st_mxr8Gh7sHO0Cd3laQ5obUvK6HKy6anGisZc0KbNd8XOjb1OOXt0Zye7C_swzegxzj_Q_WNGV7H1NeYmPFPbuD-mZp2n192L0aYa3pzrRff9-sv9-iu-_XazWV_eYscJnbHilirtFCiuiWRecy8HD5x6wYkf2KBAhB604xyGYeiF8MF558eeSUcFsIvuw8n3UPLPY6iz2cfqQkp2CvlYDZGKCA2U8_-j7SIhGdML-u4v9CEfS_uzUazXkjAtdaPIiXIl11rCaA4l7m15MgTMEpU5RWVaVGaJyiya92dnW51NY7GTi_W3kCpJeqaXv-iJq2017UL544J_mv8Ce1ChrA</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Qi, Honghai</creator><creator>Qi, Pu</creator><creator>Altinakar, M. S.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20130801</creationdate><title>GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation</title><author>Qi, Honghai ; Qi, Pu ; Altinakar, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-74a278c70748163d84d6bd042d541db3b705e908c440bbb955decdcdf936c2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmospheric Sciences</topic><topic>Case studies</topic><topic>Censuses</topic><topic>Civil Engineering</topic><topic>Computer programs</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Decision making</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environment</topic><topic>Exact sciences and technology</topic><topic>Expected values</topic><topic>Flood control</topic><topic>Flood damage</topic><topic>Flood management</topic><topic>Floods</topic><topic>Freshwater</topic><topic>Geographic information systems</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Management decisions</topic><topic>Mathematical programming</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Multiple criteria decision making</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Natural resources</topic><topic>Preferences</topic><topic>Remote sensing</topic><topic>Resource management</topic><topic>Software</topic><topic>Spatial analysis</topic><topic>Spatial distribution</topic><topic>Studies</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Honghai</creatorcontrib><creatorcontrib>Qi, Pu</creatorcontrib><creatorcontrib>Altinakar, M. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Honghai</au><au>Qi, Pu</au><au>Altinakar, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>27</volume><issue>10</issue><spage>3631</spage><epage>3645</epage><pages>3631-3645</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><coden>WRMAEJ</coden><abstract>Spatial Monte Carlo Analysis (SMCA) is a newly developed Multi-Criteria Decision Making (MCDM) technique based on Spatial Compromise Programming (SCP) and Monte Carlo Simulation (MCS) technique. In contrast to other conventional MCDM techniques, SMCA has the ability to address uneven spatial distribution of criteria values in the evaluation and ranking of alternatives under various uncertainties. Using this technique, a new flood management tool has been developed within the framework of widely used GIS software ArcGIS. This tool has a user friendly interface which allows construction of user defined criteria, running of SCP computations under uncertain impacting factors and visualization of results. This tool has also the ability to interact with and use of classified Remote Sensing (RS) image layers, and other GIS feature layers like census block boundaries for flood damage calculation and loss of life estimation. The 100-year flood management strategy for Oconee River near the City of Milledgeville, Georgia, USA is chosen as a case study to demonstrate the capabilities of the software. The test result indicates that this new SMCA tool provides a very versatile environment for spatial comparison of various flood mitigation alternatives by taking into account various uncertainties, which will greatly enhance the quality of the decision making process. This tool can also be easily modified and implemented for solving a large variety of problems related to natural resources planning and management.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-013-0370-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2013-08, Vol.27 (10), p.3631-3645
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_miscellaneous_1671580244
source SpringerLink Journals - AutoHoldings
subjects Atmospheric Sciences
Case studies
Censuses
Civil Engineering
Computer programs
Computer simulation
Construction
Decision making
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environment
Exact sciences and technology
Expected values
Flood control
Flood damage
Flood management
Floods
Freshwater
Geographic information systems
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology
Hydrology. Hydrogeology
Hydrology/Water Resources
Management decisions
Mathematical programming
Monte Carlo methods
Monte Carlo simulation
Multiple criteria decision making
Natural hazards: prediction, damages, etc
Natural resources
Preferences
Remote sensing
Resource management
Software
Spatial analysis
Spatial distribution
Studies
Water resources
Water resources management
title GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GIS-Based%20Spatial%20Monte%20Carlo%20Analysis%20for%20Integrated%20Flood%20Management%20with%20Two%20Dimensional%20Flood%20Simulation&rft.jtitle=Water%20resources%20management&rft.au=Qi,%20Honghai&rft.date=2013-08-01&rft.volume=27&rft.issue=10&rft.spage=3631&rft.epage=3645&rft.pages=3631-3645&rft.issn=0920-4741&rft.eissn=1573-1650&rft.coden=WRMAEJ&rft_id=info:doi/10.1007/s11269-013-0370-8&rft_dat=%3Cproquest_cross%3E3014641011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398613868&rft_id=info:pmid/&rfr_iscdi=true