Thermodynamic evidence for valley-dependent density of states in bulk bismuth

The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects. Electron-like carriers in bismuth are described by the Dirac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2014-05, Vol.13 (5), p.461-465
Hauptverfasser: Küchler, R., Steinke, L., Daou, R., Brando, M., Behnia, K., Steglich, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 5
container_start_page 461
container_title Nature materials
container_volume 13
creator Küchler, R.
Steinke, L.
Daou, R.
Brando, M.
Behnia, K.
Steglich, F.
description The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects. Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis 1 . The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention 2 . Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.
doi_str_mv 10.1038/nmat3909
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671578993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3415730691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-57cff7fdca307d3974d0004600bd8b5a0651dde283ce37e75551f8b87a9b84f63</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRbK2Cv0AWvOghupv9zFGKX1DxUs9hk521qfmou0kh_95IW5VevMwMMw_vMPMidE7JDSVM39aVaVlCkgM0plzJiEtJDrc1pXE8QichLAmJqRDyGI1iLhljXIzRy3wBvmpsX5uqyDGsCwt1Dtg1Hq9NWUIfWVhBPXRbPIRQtD1uHA6taSHgosZZV37grAhV1y5O0ZEzZYCzbZ6gt4f7-fQpmr0-Pk_vZlHOlG4joXLnlLO5YURZlihuCSFcEpJZnQlDpKDWQqxZDkyBEkJQpzOtTJJp7iSboKuN7so3nx2ENq2KkENZmhqaLqRUKiqUThL2PyqolnHMBR_Qyz102XS-Hg4ZKKFkLDkjv4K5b0Lw4NKVLyrj-5SS9NuNdOfGgF5sBbusAvsD7t4_ANcbIAyj-h38n437Yl__iJJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557626430</pqid></control><display><type>article</type><title>Thermodynamic evidence for valley-dependent density of states in bulk bismuth</title><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Küchler, R. ; Steinke, L. ; Daou, R. ; Brando, M. ; Behnia, K. ; Steglich, F.</creator><creatorcontrib>Küchler, R. ; Steinke, L. ; Daou, R. ; Brando, M. ; Behnia, K. ; Steglich, F.</creatorcontrib><description>The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects. Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis 1 . The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention 2 . Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3909</identifier><identifier>PMID: 24633345</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; Anisotropy ; Biomaterials ; Bismuth ; Carriers ; Chemical elements ; Condensed Matter Physics ; Density of states ; Electron mass ; Electrons ; Fermi level ; Fermi surfaces ; letter ; Low temperature ; Magnetic fields ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Thermodynamics ; Valleys</subject><ispartof>Nature materials, 2014-05, Vol.13 (5), p.461-465</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-57cff7fdca307d3974d0004600bd8b5a0651dde283ce37e75551f8b87a9b84f63</citedby><cites>FETCH-LOGICAL-c378t-57cff7fdca307d3974d0004600bd8b5a0651dde283ce37e75551f8b87a9b84f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3909$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3909$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24633345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Küchler, R.</creatorcontrib><creatorcontrib>Steinke, L.</creatorcontrib><creatorcontrib>Daou, R.</creatorcontrib><creatorcontrib>Brando, M.</creatorcontrib><creatorcontrib>Behnia, K.</creatorcontrib><creatorcontrib>Steglich, F.</creatorcontrib><title>Thermodynamic evidence for valley-dependent density of states in bulk bismuth</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects. Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis 1 . The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention 2 . Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.</description><subject>639/301/119/995</subject><subject>Anisotropy</subject><subject>Biomaterials</subject><subject>Bismuth</subject><subject>Carriers</subject><subject>Chemical elements</subject><subject>Condensed Matter Physics</subject><subject>Density of states</subject><subject>Electron mass</subject><subject>Electrons</subject><subject>Fermi level</subject><subject>Fermi surfaces</subject><subject>letter</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Thermodynamics</subject><subject>Valleys</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU1Lw0AQhhdRbK2Cv0AWvOghupv9zFGKX1DxUs9hk521qfmou0kh_95IW5VevMwMMw_vMPMidE7JDSVM39aVaVlCkgM0plzJiEtJDrc1pXE8QichLAmJqRDyGI1iLhljXIzRy3wBvmpsX5uqyDGsCwt1Dtg1Hq9NWUIfWVhBPXRbPIRQtD1uHA6taSHgosZZV37grAhV1y5O0ZEzZYCzbZ6gt4f7-fQpmr0-Pk_vZlHOlG4joXLnlLO5YURZlihuCSFcEpJZnQlDpKDWQqxZDkyBEkJQpzOtTJJp7iSboKuN7so3nx2ENq2KkENZmhqaLqRUKiqUThL2PyqolnHMBR_Qyz102XS-Hg4ZKKFkLDkjv4K5b0Lw4NKVLyrj-5SS9NuNdOfGgF5sBbusAvsD7t4_ANcbIAyj-h38n437Yl__iJJI</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Küchler, R.</creator><creator>Steinke, L.</creator><creator>Daou, R.</creator><creator>Brando, M.</creator><creator>Behnia, K.</creator><creator>Steglich, F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Thermodynamic evidence for valley-dependent density of states in bulk bismuth</title><author>Küchler, R. ; Steinke, L. ; Daou, R. ; Brando, M. ; Behnia, K. ; Steglich, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-57cff7fdca307d3974d0004600bd8b5a0651dde283ce37e75551f8b87a9b84f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/995</topic><topic>Anisotropy</topic><topic>Biomaterials</topic><topic>Bismuth</topic><topic>Carriers</topic><topic>Chemical elements</topic><topic>Condensed Matter Physics</topic><topic>Density of states</topic><topic>Electron mass</topic><topic>Electrons</topic><topic>Fermi level</topic><topic>Fermi surfaces</topic><topic>letter</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Thermodynamics</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Küchler, R.</creatorcontrib><creatorcontrib>Steinke, L.</creatorcontrib><creatorcontrib>Daou, R.</creatorcontrib><creatorcontrib>Brando, M.</creatorcontrib><creatorcontrib>Behnia, K.</creatorcontrib><creatorcontrib>Steglich, F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Küchler, R.</au><au>Steinke, L.</au><au>Daou, R.</au><au>Brando, M.</au><au>Behnia, K.</au><au>Steglich, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic evidence for valley-dependent density of states in bulk bismuth</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>13</volume><issue>5</issue><spage>461</spage><epage>465</epage><pages>461-465</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects. Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis 1 . The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention 2 . Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24633345</pmid><doi>10.1038/nmat3909</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2014-05, Vol.13 (5), p.461-465
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1671578993
source Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings
subjects 639/301/119/995
Anisotropy
Biomaterials
Bismuth
Carriers
Chemical elements
Condensed Matter Physics
Density of states
Electron mass
Electrons
Fermi level
Fermi surfaces
letter
Low temperature
Magnetic fields
Materials Science
Nanotechnology
Optical and Electronic Materials
Thermodynamics
Valleys
title Thermodynamic evidence for valley-dependent density of states in bulk bismuth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20evidence%20for%20valley-dependent%20density%20of%20states%20in%20bulk%20bismuth&rft.jtitle=Nature%20materials&rft.au=K%C3%BCchler,%20R.&rft.date=2014-05-01&rft.volume=13&rft.issue=5&rft.spage=461&rft.epage=465&rft.pages=461-465&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3909&rft_dat=%3Cproquest_cross%3E3415730691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1557626430&rft_id=info:pmid/24633345&rfr_iscdi=true