Thermodynamic evidence for valley-dependent density of states in bulk bismuth
The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects. Electron-like carriers in bismuth are described by the Dirac...
Gespeichert in:
Veröffentlicht in: | Nature materials 2014-05, Vol.13 (5), p.461-465 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 465 |
---|---|
container_issue | 5 |
container_start_page | 461 |
container_title | Nature materials |
container_volume | 13 |
creator | Küchler, R. Steinke, L. Daou, R. Brando, M. Behnia, K. Steglich, F. |
description | The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects.
Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis
1
. The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention
2
. Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth. |
doi_str_mv | 10.1038/nmat3909 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671578993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3415730691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-57cff7fdca307d3974d0004600bd8b5a0651dde283ce37e75551f8b87a9b84f63</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRbK2Cv0AWvOghupv9zFGKX1DxUs9hk521qfmou0kh_95IW5VevMwMMw_vMPMidE7JDSVM39aVaVlCkgM0plzJiEtJDrc1pXE8QichLAmJqRDyGI1iLhljXIzRy3wBvmpsX5uqyDGsCwt1Dtg1Hq9NWUIfWVhBPXRbPIRQtD1uHA6taSHgosZZV37grAhV1y5O0ZEzZYCzbZ6gt4f7-fQpmr0-Pk_vZlHOlG4joXLnlLO5YURZlihuCSFcEpJZnQlDpKDWQqxZDkyBEkJQpzOtTJJp7iSboKuN7so3nx2ENq2KkENZmhqaLqRUKiqUThL2PyqolnHMBR_Qyz102XS-Hg4ZKKFkLDkjv4K5b0Lw4NKVLyrj-5SS9NuNdOfGgF5sBbusAvsD7t4_ANcbIAyj-h38n437Yl__iJJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557626430</pqid></control><display><type>article</type><title>Thermodynamic evidence for valley-dependent density of states in bulk bismuth</title><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Küchler, R. ; Steinke, L. ; Daou, R. ; Brando, M. ; Behnia, K. ; Steglich, F.</creator><creatorcontrib>Küchler, R. ; Steinke, L. ; Daou, R. ; Brando, M. ; Behnia, K. ; Steglich, F.</creatorcontrib><description>The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects.
Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis
1
. The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention
2
. Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3909</identifier><identifier>PMID: 24633345</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; Anisotropy ; Biomaterials ; Bismuth ; Carriers ; Chemical elements ; Condensed Matter Physics ; Density of states ; Electron mass ; Electrons ; Fermi level ; Fermi surfaces ; letter ; Low temperature ; Magnetic fields ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Thermodynamics ; Valleys</subject><ispartof>Nature materials, 2014-05, Vol.13 (5), p.461-465</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-57cff7fdca307d3974d0004600bd8b5a0651dde283ce37e75551f8b87a9b84f63</citedby><cites>FETCH-LOGICAL-c378t-57cff7fdca307d3974d0004600bd8b5a0651dde283ce37e75551f8b87a9b84f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3909$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3909$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24633345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Küchler, R.</creatorcontrib><creatorcontrib>Steinke, L.</creatorcontrib><creatorcontrib>Daou, R.</creatorcontrib><creatorcontrib>Brando, M.</creatorcontrib><creatorcontrib>Behnia, K.</creatorcontrib><creatorcontrib>Steglich, F.</creatorcontrib><title>Thermodynamic evidence for valley-dependent density of states in bulk bismuth</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects.
Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis
1
. The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention
2
. Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.</description><subject>639/301/119/995</subject><subject>Anisotropy</subject><subject>Biomaterials</subject><subject>Bismuth</subject><subject>Carriers</subject><subject>Chemical elements</subject><subject>Condensed Matter Physics</subject><subject>Density of states</subject><subject>Electron mass</subject><subject>Electrons</subject><subject>Fermi level</subject><subject>Fermi surfaces</subject><subject>letter</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Thermodynamics</subject><subject>Valleys</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU1Lw0AQhhdRbK2Cv0AWvOghupv9zFGKX1DxUs9hk521qfmou0kh_95IW5VevMwMMw_vMPMidE7JDSVM39aVaVlCkgM0plzJiEtJDrc1pXE8QichLAmJqRDyGI1iLhljXIzRy3wBvmpsX5uqyDGsCwt1Dtg1Hq9NWUIfWVhBPXRbPIRQtD1uHA6taSHgosZZV37grAhV1y5O0ZEzZYCzbZ6gt4f7-fQpmr0-Pk_vZlHOlG4joXLnlLO5YURZlihuCSFcEpJZnQlDpKDWQqxZDkyBEkJQpzOtTJJp7iSboKuN7so3nx2ENq2KkENZmhqaLqRUKiqUThL2PyqolnHMBR_Qyz102XS-Hg4ZKKFkLDkjv4K5b0Lw4NKVLyrj-5SS9NuNdOfGgF5sBbusAvsD7t4_ANcbIAyj-h38n437Yl__iJJI</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Küchler, R.</creator><creator>Steinke, L.</creator><creator>Daou, R.</creator><creator>Brando, M.</creator><creator>Behnia, K.</creator><creator>Steglich, F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Thermodynamic evidence for valley-dependent density of states in bulk bismuth</title><author>Küchler, R. ; Steinke, L. ; Daou, R. ; Brando, M. ; Behnia, K. ; Steglich, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-57cff7fdca307d3974d0004600bd8b5a0651dde283ce37e75551f8b87a9b84f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/995</topic><topic>Anisotropy</topic><topic>Biomaterials</topic><topic>Bismuth</topic><topic>Carriers</topic><topic>Chemical elements</topic><topic>Condensed Matter Physics</topic><topic>Density of states</topic><topic>Electron mass</topic><topic>Electrons</topic><topic>Fermi level</topic><topic>Fermi surfaces</topic><topic>letter</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Thermodynamics</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Küchler, R.</creatorcontrib><creatorcontrib>Steinke, L.</creatorcontrib><creatorcontrib>Daou, R.</creatorcontrib><creatorcontrib>Brando, M.</creatorcontrib><creatorcontrib>Behnia, K.</creatorcontrib><creatorcontrib>Steglich, F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Küchler, R.</au><au>Steinke, L.</au><au>Daou, R.</au><au>Brando, M.</au><au>Behnia, K.</au><au>Steglich, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic evidence for valley-dependent density of states in bulk bismuth</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>13</volume><issue>5</issue><spage>461</spage><epage>465</epage><pages>461-465</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The electronic properties of bismuth under an applied magnetic field have latterly become a topic of interest. An angle-resolved magnetostriction approach is now used to provide thermodynamic evidence for unusual symmetry-breaking effects.
Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis
1
. The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention
2
. Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudogap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24633345</pmid><doi>10.1038/nmat3909</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2014-05, Vol.13 (5), p.461-465 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671578993 |
source | Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings |
subjects | 639/301/119/995 Anisotropy Biomaterials Bismuth Carriers Chemical elements Condensed Matter Physics Density of states Electron mass Electrons Fermi level Fermi surfaces letter Low temperature Magnetic fields Materials Science Nanotechnology Optical and Electronic Materials Thermodynamics Valleys |
title | Thermodynamic evidence for valley-dependent density of states in bulk bismuth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20evidence%20for%20valley-dependent%20density%20of%20states%20in%20bulk%20bismuth&rft.jtitle=Nature%20materials&rft.au=K%C3%BCchler,%20R.&rft.date=2014-05-01&rft.volume=13&rft.issue=5&rft.spage=461&rft.epage=465&rft.pages=461-465&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3909&rft_dat=%3Cproquest_cross%3E3415730691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1557626430&rft_id=info:pmid/24633345&rfr_iscdi=true |