Surface Roughness Modeling and Prediction by ANN when Drilling Udimet 720

Article deals with design of artificial neural network (ANN) for prediction of the surface roughness as one of the important indicators of machined surface quality. Back propagation neural network was trained and tested for prediction of the machined surface roughness. Cutting conditions, selected m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2014-01, Vol.581, p.366-371
Hauptverfasser: Vrabel, Marek, Mankova, Ildiko, Beno, Jozef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue
container_start_page 366
container_title Key engineering materials
container_volume 581
creator Vrabel, Marek
Mankova, Ildiko
Beno, Jozef
description Article deals with design of artificial neural network (ANN) for prediction of the surface roughness as one of the important indicators of machined surface quality. Back propagation neural network was trained and tested for prediction of the machined surface roughness. Cutting conditions, selected monitoring indices and tool wear parameter were given as inputs to the ANN. Test sample was nickel based super alloy Udimet 720, which is used as material for highly stressed jet engine components. Experimental data collected from tests were used as input into ANN to identify the sensitivity among cutting conditions, monitoring indices and progressive tool wear and machined surface roughness.
doi_str_mv 10.4028/www.scientific.net/KEM.581.366
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671572303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671572303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-99a1d28aaa6dd8b257183942969acfdce1e0be9f63f1e87db935c2533de984473</originalsourceid><addsrcrecordid>eNqN0M1LwzAYx_EiCs6X_yEn8dKalzVNLqLofEE3Rd05ZMlTl9GlmrSU_fdGJ3j1lBx-fOH5ZNkJwcUYU3E2DEMRjQPfudqZwkN39jCZFqUgBeN8JxsRzmkuK1nupj8mLJeC8v3sIMYVxowIUo6y-9c-1NoAemn796WHGNG0tdA4_460t-g5gHWmc61Hiw26nM3QsASProNrfjZz69bQoYrio2yv1k2E49_3MJvfTN6u7vLHp9v7q8vH3DBOulxKTSwVWmturVjQsiKCyTGVXGpTWwME8AJkzVlNQFR2IVlpaMmYBSnG44odZqfb7kdoP3uInVq7aKBptIe2j4rwipQVZZil6fl2akIbY4BafQS31mGjCFbfhioZqj9DlQxVMlTJUCXDFLjYBrqgfezALNWq7YNP9_038QUVe4KH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671572303</pqid></control><display><type>article</type><title>Surface Roughness Modeling and Prediction by ANN when Drilling Udimet 720</title><source>Scientific.net Journals</source><creator>Vrabel, Marek ; Mankova, Ildiko ; Beno, Jozef</creator><creatorcontrib>Vrabel, Marek ; Mankova, Ildiko ; Beno, Jozef</creatorcontrib><description>Article deals with design of artificial neural network (ANN) for prediction of the surface roughness as one of the important indicators of machined surface quality. Back propagation neural network was trained and tested for prediction of the machined surface roughness. Cutting conditions, selected monitoring indices and tool wear parameter were given as inputs to the ANN. Test sample was nickel based super alloy Udimet 720, which is used as material for highly stressed jet engine components. Experimental data collected from tests were used as input into ANN to identify the sensitivity among cutting conditions, monitoring indices and progressive tool wear and machined surface roughness.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.581.366</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Cutting tool materials ; Cutting wear ; Learning theory ; Materials selection ; Mathematical models ; Monitoring ; Neural networks ; Nickel base alloys ; Superalloys ; Surface roughness</subject><ispartof>Key engineering materials, 2014-01, Vol.581, p.366-371</ispartof><rights>2014 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-99a1d28aaa6dd8b257183942969acfdce1e0be9f63f1e87db935c2533de984473</citedby><cites>FETCH-LOGICAL-c361t-99a1d28aaa6dd8b257183942969acfdce1e0be9f63f1e87db935c2533de984473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2656?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vrabel, Marek</creatorcontrib><creatorcontrib>Mankova, Ildiko</creatorcontrib><creatorcontrib>Beno, Jozef</creatorcontrib><title>Surface Roughness Modeling and Prediction by ANN when Drilling Udimet 720</title><title>Key engineering materials</title><description>Article deals with design of artificial neural network (ANN) for prediction of the surface roughness as one of the important indicators of machined surface quality. Back propagation neural network was trained and tested for prediction of the machined surface roughness. Cutting conditions, selected monitoring indices and tool wear parameter were given as inputs to the ANN. Test sample was nickel based super alloy Udimet 720, which is used as material for highly stressed jet engine components. Experimental data collected from tests were used as input into ANN to identify the sensitivity among cutting conditions, monitoring indices and progressive tool wear and machined surface roughness.</description><subject>Cutting tool materials</subject><subject>Cutting wear</subject><subject>Learning theory</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Nickel base alloys</subject><subject>Superalloys</subject><subject>Surface roughness</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0M1LwzAYx_EiCs6X_yEn8dKalzVNLqLofEE3Rd05ZMlTl9GlmrSU_fdGJ3j1lBx-fOH5ZNkJwcUYU3E2DEMRjQPfudqZwkN39jCZFqUgBeN8JxsRzmkuK1nupj8mLJeC8v3sIMYVxowIUo6y-9c-1NoAemn796WHGNG0tdA4_460t-g5gHWmc61Hiw26nM3QsASProNrfjZz69bQoYrio2yv1k2E49_3MJvfTN6u7vLHp9v7q8vH3DBOulxKTSwVWmturVjQsiKCyTGVXGpTWwME8AJkzVlNQFR2IVlpaMmYBSnG44odZqfb7kdoP3uInVq7aKBptIe2j4rwipQVZZil6fl2akIbY4BafQS31mGjCFbfhioZqj9DlQxVMlTJUCXDFLjYBrqgfezALNWq7YNP9_038QUVe4KH</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Vrabel, Marek</creator><creator>Mankova, Ildiko</creator><creator>Beno, Jozef</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>Surface Roughness Modeling and Prediction by ANN when Drilling Udimet 720</title><author>Vrabel, Marek ; Mankova, Ildiko ; Beno, Jozef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-99a1d28aaa6dd8b257183942969acfdce1e0be9f63f1e87db935c2533de984473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cutting tool materials</topic><topic>Cutting wear</topic><topic>Learning theory</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Nickel base alloys</topic><topic>Superalloys</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vrabel, Marek</creatorcontrib><creatorcontrib>Mankova, Ildiko</creatorcontrib><creatorcontrib>Beno, Jozef</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vrabel, Marek</au><au>Mankova, Ildiko</au><au>Beno, Jozef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Roughness Modeling and Prediction by ANN when Drilling Udimet 720</atitle><jtitle>Key engineering materials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>581</volume><spage>366</spage><epage>371</epage><pages>366-371</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Article deals with design of artificial neural network (ANN) for prediction of the surface roughness as one of the important indicators of machined surface quality. Back propagation neural network was trained and tested for prediction of the machined surface roughness. Cutting conditions, selected monitoring indices and tool wear parameter were given as inputs to the ANN. Test sample was nickel based super alloy Udimet 720, which is used as material for highly stressed jet engine components. Experimental data collected from tests were used as input into ANN to identify the sensitivity among cutting conditions, monitoring indices and progressive tool wear and machined surface roughness.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.581.366</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2014-01, Vol.581, p.366-371
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_1671572303
source Scientific.net Journals
subjects Cutting tool materials
Cutting wear
Learning theory
Materials selection
Mathematical models
Monitoring
Neural networks
Nickel base alloys
Superalloys
Surface roughness
title Surface Roughness Modeling and Prediction by ANN when Drilling Udimet 720
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Roughness%20Modeling%20and%20Prediction%20by%20ANN%20when%20Drilling%20Udimet%20720&rft.jtitle=Key%20engineering%20materials&rft.au=Vrabel,%20Marek&rft.date=2014-01-01&rft.volume=581&rft.spage=366&rft.epage=371&rft.pages=366-371&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.581.366&rft_dat=%3Cproquest_cross%3E1671572303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671572303&rft_id=info:pmid/&rfr_iscdi=true