Estimation of conditional moment by moving least squares and its application for importance analysis

Combined with advantages of moving least squares approximation, a new method for estimating higher-order conditional moment is established, which is useful for application in importance analysis and provides a supplement of the standard variance-based importance analysis. On the other hand, after ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability Journal of risk and reliability, 2013-12, Vol.227 (6), p.np-np
Hauptverfasser: Ruan, Wenbin, Lu, Zhenzhou, Wei, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue 6
container_start_page np
container_title Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability
container_volume 227
creator Ruan, Wenbin
Lu, Zhenzhou
Wei, Pengfei
description Combined with advantages of moving least squares approximation, a new method for estimating higher-order conditional moment is established, which is useful for application in importance analysis and provides a supplement of the standard variance-based importance analysis. On the other hand, after obtaining the first four-order moments, the probability density function can be emulated by use of the Edgeworth expansion procedure, thereby a new method to compute the moment independent importance measure index Formula proposed by Borgonovo is presented in this article. Two examples are employed to demonstrate that it is necessary to analyze higher-order conditional moment in importance analysis. At the same time, we study the feasibility of the Edgeworth expansion-based method for estimating the index Formula by applying it to these examples. [PUBLICATIONABSTRACT]
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671571699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496896106</sourcerecordid><originalsourceid>FETCH-LOGICAL-p669-5d8fb94334cb48bf60b8e89d4ab26998015a7e348fb98b9c1a4c8958445095f33</originalsourceid><addsrcrecordid>eNqFj71qwzAYRT200DTtO2jsYpCqH-sbS0h_INAlQ7bwSZaKiiw5llzI29ch3Tvde-Fw4N40K9YJ3VKqDnfNfSnflIqOKbpq-m2pYcAaciLZE5tTHy4DIxny4FIl5ry0n5C-SHRYKimnGSdXCKaehLrkOMZgrwafJxKGMU8Vk3ULgvFcQnlobj3G4h7_ct3sX7f7zXu7-3z72Lzs2lEpaGWvvQHBubBGaOMVNdpp6AWaZwWgKZPYOS4ulDZgGQqrQWohJAXpOV83T1ftOOXT7Eo9DqFYFyMml-dyZKpjcrkN8D8qQGlQjCr-CwYhYdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496896106</pqid></control><display><type>article</type><title>Estimation of conditional moment by moving least squares and its application for importance analysis</title><source>Access via SAGE</source><creator>Ruan, Wenbin ; Lu, Zhenzhou ; Wei, Pengfei</creator><creatorcontrib>Ruan, Wenbin ; Lu, Zhenzhou ; Wei, Pengfei</creatorcontrib><description>Combined with advantages of moving least squares approximation, a new method for estimating higher-order conditional moment is established, which is useful for application in importance analysis and provides a supplement of the standard variance-based importance analysis. On the other hand, after obtaining the first four-order moments, the probability density function can be emulated by use of the Edgeworth expansion procedure, thereby a new method to compute the moment independent importance measure index Formula proposed by Borgonovo is presented in this article. Two examples are employed to demonstrate that it is necessary to analyze higher-order conditional moment in importance analysis. At the same time, we study the feasibility of the Edgeworth expansion-based method for estimating the index Formula by applying it to these examples. [PUBLICATIONABSTRACT]</description><identifier>ISSN: 1748-006X</identifier><language>eng</language><subject>Approximation ; Estimating ; Feasibility ; Least squares method ; Mathematical analysis ; Mechanical engineers ; Probability density functions</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2013-12, Vol.227 (6), p.np-np</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Ruan, Wenbin</creatorcontrib><creatorcontrib>Lu, Zhenzhou</creatorcontrib><creatorcontrib>Wei, Pengfei</creatorcontrib><title>Estimation of conditional moment by moving least squares and its application for importance analysis</title><title>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</title><description>Combined with advantages of moving least squares approximation, a new method for estimating higher-order conditional moment is established, which is useful for application in importance analysis and provides a supplement of the standard variance-based importance analysis. On the other hand, after obtaining the first four-order moments, the probability density function can be emulated by use of the Edgeworth expansion procedure, thereby a new method to compute the moment independent importance measure index Formula proposed by Borgonovo is presented in this article. Two examples are employed to demonstrate that it is necessary to analyze higher-order conditional moment in importance analysis. At the same time, we study the feasibility of the Edgeworth expansion-based method for estimating the index Formula by applying it to these examples. [PUBLICATIONABSTRACT]</description><subject>Approximation</subject><subject>Estimating</subject><subject>Feasibility</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mechanical engineers</subject><subject>Probability density functions</subject><issn>1748-006X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFj71qwzAYRT200DTtO2jsYpCqH-sbS0h_INAlQ7bwSZaKiiw5llzI29ch3Tvde-Fw4N40K9YJ3VKqDnfNfSnflIqOKbpq-m2pYcAaciLZE5tTHy4DIxny4FIl5ry0n5C-SHRYKimnGSdXCKaehLrkOMZgrwafJxKGMU8Vk3ULgvFcQnlobj3G4h7_ct3sX7f7zXu7-3z72Lzs2lEpaGWvvQHBubBGaOMVNdpp6AWaZwWgKZPYOS4ulDZgGQqrQWohJAXpOV83T1ftOOXT7Eo9DqFYFyMml-dyZKpjcrkN8D8qQGlQjCr-CwYhYdY</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Ruan, Wenbin</creator><creator>Lu, Zhenzhou</creator><creator>Wei, Pengfei</creator><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20131201</creationdate><title>Estimation of conditional moment by moving least squares and its application for importance analysis</title><author>Ruan, Wenbin ; Lu, Zhenzhou ; Wei, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p669-5d8fb94334cb48bf60b8e89d4ab26998015a7e348fb98b9c1a4c8958445095f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Estimating</topic><topic>Feasibility</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mechanical engineers</topic><topic>Probability density functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Wenbin</creatorcontrib><creatorcontrib>Lu, Zhenzhou</creatorcontrib><creatorcontrib>Wei, Pengfei</creatorcontrib><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Wenbin</au><au>Lu, Zhenzhou</au><au>Wei, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of conditional moment by moving least squares and its application for importance analysis</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>227</volume><issue>6</issue><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>1748-006X</issn><abstract>Combined with advantages of moving least squares approximation, a new method for estimating higher-order conditional moment is established, which is useful for application in importance analysis and provides a supplement of the standard variance-based importance analysis. On the other hand, after obtaining the first four-order moments, the probability density function can be emulated by use of the Edgeworth expansion procedure, thereby a new method to compute the moment independent importance measure index Formula proposed by Borgonovo is presented in this article. Two examples are employed to demonstrate that it is necessary to analyze higher-order conditional moment in importance analysis. At the same time, we study the feasibility of the Edgeworth expansion-based method for estimating the index Formula by applying it to these examples. [PUBLICATIONABSTRACT]</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1748-006X
ispartof Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2013-12, Vol.227 (6), p.np-np
issn 1748-006X
language eng
recordid cdi_proquest_miscellaneous_1671571699
source Access via SAGE
subjects Approximation
Estimating
Feasibility
Least squares method
Mathematical analysis
Mechanical engineers
Probability density functions
title Estimation of conditional moment by moving least squares and its application for importance analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20conditional%20moment%20by%20moving%20least%20squares%20and%20its%20application%20for%20importance%20analysis&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20O,%20Journal%20of%20risk%20and%20reliability&rft.au=Ruan,%20Wenbin&rft.date=2013-12-01&rft.volume=227&rft.issue=6&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=1748-006X&rft_id=info:doi/&rft_dat=%3Cproquest%3E1496896106%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496896106&rft_id=info:pmid/&rfr_iscdi=true