An Improved Moving Least Squares Method for Curve and Surface Fitting

The moving least squares (MLS) method has been developed for the fitting of measured data contaminated with random error. The local approximants of MLS method only take the error of dependent variable into account, whereas the independent variable of measured data always contains random error. Consi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-6
Hauptverfasser: Hu, Ming, Ji, Shijun, Zhao, Ji, Gu, Tianqi, Zhang, Lei, Li, Xiangbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2013
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2013
creator Hu, Ming
Ji, Shijun
Zhao, Ji
Gu, Tianqi
Zhang, Lei
Li, Xiangbo
description The moving least squares (MLS) method has been developed for the fitting of measured data contaminated with random error. The local approximants of MLS method only take the error of dependent variable into account, whereas the independent variable of measured data always contains random error. Considering the errors of all variables, this paper presents an improved moving least squares (IMLS) method to generate curve and surface for the measured data. In IMLS method, total least squares (TLS) with a parameter λ based on singular value decomposition is introduced to the local approximants. A procedure is developed to determine the parameter λ. Numerical examples for curve and surface fitting are given to prove the performance of IMLS method.
doi_str_mv 10.1155/2013/159694
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671571245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986176003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c101bbc53d775d71ffa9e8c18679cccf94bdb2a527643212709c9ffac9a32b693</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAiCs7pybsEvIhSl5c0SXMcY9PBhocpeAtpmmhla7eknfjfm1EP4sXTe4ffe3x8SXIJ-B6AsRHBQEfAJJfZUTIAxmnKIBPHccckS4HQ19PkLIQPjAkwyAfJdFyj-Wbrm70t0bLZV_UbWlgdWrTaddrbgJa2fW9K5BqPJp3fW6TrEq0677SxaFa1bTw5T06cXgd78TOHycts-jx5TBdPD_PJeJEamss2NYChKAyjpRCsFOCcljY3kHMhjTFOZkVZEM2I4BklQASWRkZkpKak4JIOk5v-bwy862xo1aYKxq7XurZNFxRwAUwAyVik13_oR9P5OqZTIHMOgmNMo7rrlfFNCN46tfXVRvsvBVgdKlWHSlVfadS3vX6v6lJ_Vv_gqx7bSKzTvzDOGWf0GybffZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986176003</pqid></control><display><type>article</type><title>An Improved Moving Least Squares Method for Curve and Surface Fitting</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hu, Ming ; Ji, Shijun ; Zhao, Ji ; Gu, Tianqi ; Zhang, Lei ; Li, Xiangbo</creator><contributor>Andrianov, Igor</contributor><creatorcontrib>Hu, Ming ; Ji, Shijun ; Zhao, Ji ; Gu, Tianqi ; Zhang, Lei ; Li, Xiangbo ; Andrianov, Igor</creatorcontrib><description>The moving least squares (MLS) method has been developed for the fitting of measured data contaminated with random error. The local approximants of MLS method only take the error of dependent variable into account, whereas the independent variable of measured data always contains random error. Considering the errors of all variables, this paper presents an improved moving least squares (IMLS) method to generate curve and surface for the measured data. In IMLS method, total least squares (TLS) with a parameter λ based on singular value decomposition is introduced to the local approximants. A procedure is developed to determine the parameter λ. Numerical examples for curve and surface fitting are given to prove the performance of IMLS method.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/159694</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Advanced manufacturing technologies ; Algorithms ; Approximants ; Computational mathematics ; Curve fitting ; Dependent variables ; Economic models ; Error analysis ; Errors ; Fittings ; Independent variables ; Least squares method ; Mathematical analysis ; Mathematical models ; Mathematical problems ; Metal forming ; Methods ; Principal components analysis ; Random errors ; Singular value decomposition</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-6</ispartof><rights>Copyright © 2013 Lei Zhang et al.</rights><rights>Copyright © 2013 Lei Zhang et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-c101bbc53d775d71ffa9e8c18679cccf94bdb2a527643212709c9ffac9a32b693</citedby><cites>FETCH-LOGICAL-c389t-c101bbc53d775d71ffa9e8c18679cccf94bdb2a527643212709c9ffac9a32b693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Andrianov, Igor</contributor><creatorcontrib>Hu, Ming</creatorcontrib><creatorcontrib>Ji, Shijun</creatorcontrib><creatorcontrib>Zhao, Ji</creatorcontrib><creatorcontrib>Gu, Tianqi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Xiangbo</creatorcontrib><title>An Improved Moving Least Squares Method for Curve and Surface Fitting</title><title>Mathematical problems in engineering</title><description>The moving least squares (MLS) method has been developed for the fitting of measured data contaminated with random error. The local approximants of MLS method only take the error of dependent variable into account, whereas the independent variable of measured data always contains random error. Considering the errors of all variables, this paper presents an improved moving least squares (IMLS) method to generate curve and surface for the measured data. In IMLS method, total least squares (TLS) with a parameter λ based on singular value decomposition is introduced to the local approximants. A procedure is developed to determine the parameter λ. Numerical examples for curve and surface fitting are given to prove the performance of IMLS method.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Approximants</subject><subject>Computational mathematics</subject><subject>Curve fitting</subject><subject>Dependent variables</subject><subject>Economic models</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Fittings</subject><subject>Independent variables</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Metal forming</subject><subject>Methods</subject><subject>Principal components analysis</subject><subject>Random errors</subject><subject>Singular value decomposition</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0MFLwzAUBvAiCs7pybsEvIhSl5c0SXMcY9PBhocpeAtpmmhla7eknfjfm1EP4sXTe4ffe3x8SXIJ-B6AsRHBQEfAJJfZUTIAxmnKIBPHccckS4HQ19PkLIQPjAkwyAfJdFyj-Wbrm70t0bLZV_UbWlgdWrTaddrbgJa2fW9K5BqPJp3fW6TrEq0677SxaFa1bTw5T06cXgd78TOHycts-jx5TBdPD_PJeJEamss2NYChKAyjpRCsFOCcljY3kHMhjTFOZkVZEM2I4BklQASWRkZkpKak4JIOk5v-bwy862xo1aYKxq7XurZNFxRwAUwAyVik13_oR9P5OqZTIHMOgmNMo7rrlfFNCN46tfXVRvsvBVgdKlWHSlVfadS3vX6v6lJ_Vv_gqx7bSKzTvzDOGWf0GybffZk</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hu, Ming</creator><creator>Ji, Shijun</creator><creator>Zhao, Ji</creator><creator>Gu, Tianqi</creator><creator>Zhang, Lei</creator><creator>Li, Xiangbo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>An Improved Moving Least Squares Method for Curve and Surface Fitting</title><author>Hu, Ming ; Ji, Shijun ; Zhao, Ji ; Gu, Tianqi ; Zhang, Lei ; Li, Xiangbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c101bbc53d775d71ffa9e8c18679cccf94bdb2a527643212709c9ffac9a32b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Approximants</topic><topic>Computational mathematics</topic><topic>Curve fitting</topic><topic>Dependent variables</topic><topic>Economic models</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Fittings</topic><topic>Independent variables</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Metal forming</topic><topic>Methods</topic><topic>Principal components analysis</topic><topic>Random errors</topic><topic>Singular value decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Ming</creatorcontrib><creatorcontrib>Ji, Shijun</creatorcontrib><creatorcontrib>Zhao, Ji</creatorcontrib><creatorcontrib>Gu, Tianqi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Xiangbo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Ming</au><au>Ji, Shijun</au><au>Zhao, Ji</au><au>Gu, Tianqi</au><au>Zhang, Lei</au><au>Li, Xiangbo</au><au>Andrianov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Moving Least Squares Method for Curve and Surface Fitting</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The moving least squares (MLS) method has been developed for the fitting of measured data contaminated with random error. The local approximants of MLS method only take the error of dependent variable into account, whereas the independent variable of measured data always contains random error. Considering the errors of all variables, this paper presents an improved moving least squares (IMLS) method to generate curve and surface for the measured data. In IMLS method, total least squares (TLS) with a parameter λ based on singular value decomposition is introduced to the local approximants. A procedure is developed to determine the parameter λ. Numerical examples for curve and surface fitting are given to prove the performance of IMLS method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/159694</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-6
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1671571245
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Advanced manufacturing technologies
Algorithms
Approximants
Computational mathematics
Curve fitting
Dependent variables
Economic models
Error analysis
Errors
Fittings
Independent variables
Least squares method
Mathematical analysis
Mathematical models
Mathematical problems
Metal forming
Methods
Principal components analysis
Random errors
Singular value decomposition
title An Improved Moving Least Squares Method for Curve and Surface Fitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Moving%20Least%20Squares%20Method%20for%20Curve%20and%20Surface%20Fitting&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Hu,%20Ming&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/159694&rft_dat=%3Cproquest_cross%3E1986176003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986176003&rft_id=info:pmid/&rfr_iscdi=true