Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition

The segmentation of left ventricle in ultrasound imaging of human heart would provide an important clinical parameter for the evaluation of cardiac functions including volume stroke or ejection fraction and wall motion tracking. We propose a fast segmentation method to reduce laborious manual effort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2012-09, Vol.45 (9), p.3490-3500
Hauptverfasser: Ahn, Chi Young, Jung, Yoon Mo, Kwon, Oh In, Seo, Jin Keun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3500
container_issue 9
container_start_page 3490
container_title Pattern recognition
container_volume 45
creator Ahn, Chi Young
Jung, Yoon Mo
Kwon, Oh In
Seo, Jin Keun
description The segmentation of left ventricle in ultrasound imaging of human heart would provide an important clinical parameter for the evaluation of cardiac functions including volume stroke or ejection fraction and wall motion tracking. We propose a fast segmentation method to reduce laborious manual efforts and conveniently provide robust and stable cardiac quantification to users. The proposed method provides a very simple energy functional form using a predetermined Rayleigh distribution parameter so that the corresponding steepest descent approach with some shape constraints on contour is still capable of fast segmentation. We present several experimental results on two-dimensional echocardiography data for the performance of the proposed model. The experiments show that the proposed model is especially useful when a part of target boundary is seriously corrupted. ► Segmentation of left ventricle in ultrasound images is considered. ► A robust Rayleigh distribution decomposition is developed. ► Using a predetermined distribution parameter enables segmentation model to be a simple form. ► A fast algorithm using tracking points and a low order shape prior is developed. ► The new model reduces human efforts such as contour initialization.
doi_str_mv 10.1016/j.patcog.2012.02.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671567254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320312001045</els_id><sourcerecordid>1038264525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-b86b528c25b5a7a91a12721c114c79df2e8b99050283a84f79aa1833ab58162a3</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVpoNukb9CDL4VcvJFGliVfCiE0TSAQCCk9irEsu1q81kYjB_L2tbshxwYGhmG-fwY-xr4KvhVc1Be77QGzi8MWuIAtX6v-wDbCaFkqUcFHtuFcilICl5_YZ6Id50Iviw37fY2UC_LD3k8Zc4hTEftiHnNCivPUFWGPg6dipjANRYrtvOAP-DL6MPwpukA5hXb-l-u8i_tDpLBOZ-ykx5H8l9d-yn5d_3i8uinv7n_eXl3ela7ikMvW1K0C40C1CjU2AgVoEE6Iyumm68Gbtmm44mAkmqrXDaIwUmKrjKgB5Sk7P949pPg0e8p2H8j5ccTJx5msqLVQtQZVvY9yaaCuFKgFrY6oS5Eo-d4e0iIivSyQXZXbnT0qt6tyy9eql9i31w9IDsc-4eQCvWVBNbpqGli470fOL2aeg0-WXPCT811I3mXbxfD_R38B2uCZLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038264525</pqid></control><display><type>article</type><title>Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ahn, Chi Young ; Jung, Yoon Mo ; Kwon, Oh In ; Seo, Jin Keun</creator><creatorcontrib>Ahn, Chi Young ; Jung, Yoon Mo ; Kwon, Oh In ; Seo, Jin Keun</creatorcontrib><description>The segmentation of left ventricle in ultrasound imaging of human heart would provide an important clinical parameter for the evaluation of cardiac functions including volume stroke or ejection fraction and wall motion tracking. We propose a fast segmentation method to reduce laborious manual efforts and conveniently provide robust and stable cardiac quantification to users. The proposed method provides a very simple energy functional form using a predetermined Rayleigh distribution parameter so that the corresponding steepest descent approach with some shape constraints on contour is still capable of fast segmentation. We present several experimental results on two-dimensional echocardiography data for the performance of the proposed model. The experiments show that the proposed model is especially useful when a part of target boundary is seriously corrupted. ► Segmentation of left ventricle in ultrasound images is considered. ► A robust Rayleigh distribution decomposition is developed. ► Using a predetermined distribution parameter enables segmentation model to be a simple form. ► A fast algorithm using tracking points and a low order shape prior is developed. ► The new model reduces human efforts such as contour initialization.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2012.02.026</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boundaries ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Image processing ; Imaging ; Information, signal and communications theory ; Left ventricle ; Mathematical models ; Rayleigh distribution ; Segmentation ; Shape constraint ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory ; Tracking ; Ultrasound ; Ultrasound images</subject><ispartof>Pattern recognition, 2012-09, Vol.45 (9), p.3490-3500</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-b86b528c25b5a7a91a12721c114c79df2e8b99050283a84f79aa1833ab58162a3</citedby><cites>FETCH-LOGICAL-c402t-b86b528c25b5a7a91a12721c114c79df2e8b99050283a84f79aa1833ab58162a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2012.02.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25974992$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Chi Young</creatorcontrib><creatorcontrib>Jung, Yoon Mo</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Seo, Jin Keun</creatorcontrib><title>Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition</title><title>Pattern recognition</title><description>The segmentation of left ventricle in ultrasound imaging of human heart would provide an important clinical parameter for the evaluation of cardiac functions including volume stroke or ejection fraction and wall motion tracking. We propose a fast segmentation method to reduce laborious manual efforts and conveniently provide robust and stable cardiac quantification to users. The proposed method provides a very simple energy functional form using a predetermined Rayleigh distribution parameter so that the corresponding steepest descent approach with some shape constraints on contour is still capable of fast segmentation. We present several experimental results on two-dimensional echocardiography data for the performance of the proposed model. The experiments show that the proposed model is especially useful when a part of target boundary is seriously corrupted. ► Segmentation of left ventricle in ultrasound images is considered. ► A robust Rayleigh distribution decomposition is developed. ► Using a predetermined distribution parameter enables segmentation model to be a simple form. ► A fast algorithm using tracking points and a low order shape prior is developed. ► The new model reduces human efforts such as contour initialization.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Information, signal and communications theory</subject><subject>Left ventricle</subject><subject>Mathematical models</subject><subject>Rayleigh distribution</subject><subject>Segmentation</subject><subject>Shape constraint</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Tracking</subject><subject>Ultrasound</subject><subject>Ultrasound images</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVpoNukb9CDL4VcvJFGliVfCiE0TSAQCCk9irEsu1q81kYjB_L2tbshxwYGhmG-fwY-xr4KvhVc1Be77QGzi8MWuIAtX6v-wDbCaFkqUcFHtuFcilICl5_YZ6Id50Iviw37fY2UC_LD3k8Zc4hTEftiHnNCivPUFWGPg6dipjANRYrtvOAP-DL6MPwpukA5hXb-l-u8i_tDpLBOZ-ykx5H8l9d-yn5d_3i8uinv7n_eXl3ela7ikMvW1K0C40C1CjU2AgVoEE6Iyumm68Gbtmm44mAkmqrXDaIwUmKrjKgB5Sk7P949pPg0e8p2H8j5ccTJx5msqLVQtQZVvY9yaaCuFKgFrY6oS5Eo-d4e0iIivSyQXZXbnT0qt6tyy9eql9i31w9IDsc-4eQCvWVBNbpqGli470fOL2aeg0-WXPCT811I3mXbxfD_R38B2uCZLw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Ahn, Chi Young</creator><creator>Jung, Yoon Mo</creator><creator>Kwon, Oh In</creator><creator>Seo, Jin Keun</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition</title><author>Ahn, Chi Young ; Jung, Yoon Mo ; Kwon, Oh In ; Seo, Jin Keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-b86b528c25b5a7a91a12721c114c79df2e8b99050283a84f79aa1833ab58162a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Information, signal and communications theory</topic><topic>Left ventricle</topic><topic>Mathematical models</topic><topic>Rayleigh distribution</topic><topic>Segmentation</topic><topic>Shape constraint</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Tracking</topic><topic>Ultrasound</topic><topic>Ultrasound images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Chi Young</creatorcontrib><creatorcontrib>Jung, Yoon Mo</creatorcontrib><creatorcontrib>Kwon, Oh In</creatorcontrib><creatorcontrib>Seo, Jin Keun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Chi Young</au><au>Jung, Yoon Mo</au><au>Kwon, Oh In</au><au>Seo, Jin Keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition</atitle><jtitle>Pattern recognition</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>45</volume><issue>9</issue><spage>3490</spage><epage>3500</epage><pages>3490-3500</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>The segmentation of left ventricle in ultrasound imaging of human heart would provide an important clinical parameter for the evaluation of cardiac functions including volume stroke or ejection fraction and wall motion tracking. We propose a fast segmentation method to reduce laborious manual efforts and conveniently provide robust and stable cardiac quantification to users. The proposed method provides a very simple energy functional form using a predetermined Rayleigh distribution parameter so that the corresponding steepest descent approach with some shape constraints on contour is still capable of fast segmentation. We present several experimental results on two-dimensional echocardiography data for the performance of the proposed model. The experiments show that the proposed model is especially useful when a part of target boundary is seriously corrupted. ► Segmentation of left ventricle in ultrasound images is considered. ► A robust Rayleigh distribution decomposition is developed. ► Using a predetermined distribution parameter enables segmentation model to be a simple form. ► A fast algorithm using tracking points and a low order shape prior is developed. ► The new model reduces human efforts such as contour initialization.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2012.02.026</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2012-09, Vol.45 (9), p.3490-3500
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_1671567254
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Boundaries
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Image processing
Imaging
Information, signal and communications theory
Left ventricle
Mathematical models
Rayleigh distribution
Segmentation
Shape constraint
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
Tracking
Ultrasound
Ultrasound images
title Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20segmentation%20of%20ultrasound%20images%20using%20robust%20Rayleigh%20distribution%20decomposition&rft.jtitle=Pattern%20recognition&rft.au=Ahn,%20Chi%20Young&rft.date=2012-09-01&rft.volume=45&rft.issue=9&rft.spage=3490&rft.epage=3500&rft.pages=3490-3500&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2012.02.026&rft_dat=%3Cproquest_cross%3E1038264525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038264525&rft_id=info:pmid/&rft_els_id=S0031320312001045&rfr_iscdi=true