Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms

We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics communications 2013-11, Vol.309, p.71-79
Hauptverfasser: Triki, Houria, Azzouzi, Faiçal, Grelu, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue
container_start_page 71
container_title Optics communications
container_volume 309
creator Triki, Houria
Azzouzi, Faiçal
Grelu, Philippe
description We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and dark solitary waves that allows us to obtain analytically different shapes of solitary wave solutions. Parametric conditions for the existence and uniqueness of such solitary waves are presented. The solutions comprise fundamental solitons, kink and anti-kink solitons, W-shaped, dipole, tripole, and fifth-order solitons. In addition, we found a new type of solitary wave solution that takes the shape of N, illustrating the potentially rich set of solitary wave solutions of the HNLS equation. Finally, the stability of the solutions is checked by direct numerical simulation.
doi_str_mv 10.1016/j.optcom.2013.06.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671566676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030401813006032</els_id><sourcerecordid>1671566676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-850bccee60ed0cf5912e363f02567e5cc3fb0e32bec1f7f74cdbdeb258bc43cd3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAxZeskkYx4mTbpAQ4k-AWABrK5lMiKs0bm2HiotxAS5GQlmzGs3ofZ80j7FTAbEAoc6XsV0HtKs4ASFjUDHIxR6biSKXEUgB-2wGICFKQRSH7Mj7JQCIVBYztnkaumDWtiPubWdC6T75tvz43YZgbO-5bXhoibfmvSUXWVeT473tO9NT6fgLtu77qzb9-3imzVBOIb41oeWbwfTB4ARHD-QcD-RW_pgdNGXn6eRvztnbzfXr1V30-Hx7f3X5GKGUixAVGVSIRAqoBmyyhUhIKtlAkqmcMkTZVEAyqQhFkzd5inVVU5VkRYWpxFrO2dmud-3sZiAf9Mp4pK4re7KD10LlIlNK5WpE0x2KznrvqNFrZ1ajCi1AT4b1Uu8M68mwBqVHw2PsYhej8Y0PQ057NNQj1cYRBl1b83_BD2mOi2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671566676</pqid></control><display><type>article</type><title>Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms</title><source>Elsevier ScienceDirect Journals</source><creator>Triki, Houria ; Azzouzi, Faiçal ; Grelu, Philippe</creator><creatorcontrib>Triki, Houria ; Azzouzi, Faiçal ; Grelu, Philippe</creatorcontrib><description>We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and dark solitary waves that allows us to obtain analytically different shapes of solitary wave solutions. Parametric conditions for the existence and uniqueness of such solitary waves are presented. The solutions comprise fundamental solitons, kink and anti-kink solitons, W-shaped, dipole, tripole, and fifth-order solitons. In addition, we found a new type of solitary wave solution that takes the shape of N, illustrating the potentially rich set of solitary wave solutions of the HNLS equation. Finally, the stability of the solutions is checked by direct numerical simulation.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2013.06.039</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Complex amplitude ansatz ; Dispersions ; Mathematical analysis ; Mathematical models ; Nonlinear Schrödinger equation ; Nonlinearity ; Optical pulses ; Schroedinger equation ; Solitary wave solution ; Solitary waves ; Solitons</subject><ispartof>Optics communications, 2013-11, Vol.309, p.71-79</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-850bccee60ed0cf5912e363f02567e5cc3fb0e32bec1f7f74cdbdeb258bc43cd3</citedby><cites>FETCH-LOGICAL-c339t-850bccee60ed0cf5912e363f02567e5cc3fb0e32bec1f7f74cdbdeb258bc43cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0030401813006032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Triki, Houria</creatorcontrib><creatorcontrib>Azzouzi, Faiçal</creatorcontrib><creatorcontrib>Grelu, Philippe</creatorcontrib><title>Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms</title><title>Optics communications</title><description>We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and dark solitary waves that allows us to obtain analytically different shapes of solitary wave solutions. Parametric conditions for the existence and uniqueness of such solitary waves are presented. The solutions comprise fundamental solitons, kink and anti-kink solitons, W-shaped, dipole, tripole, and fifth-order solitons. In addition, we found a new type of solitary wave solution that takes the shape of N, illustrating the potentially rich set of solitary wave solutions of the HNLS equation. Finally, the stability of the solutions is checked by direct numerical simulation.</description><subject>Complex amplitude ansatz</subject><subject>Dispersions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear Schrödinger equation</subject><subject>Nonlinearity</subject><subject>Optical pulses</subject><subject>Schroedinger equation</subject><subject>Solitary wave solution</subject><subject>Solitary waves</subject><subject>Solitons</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAxZeskkYx4mTbpAQ4k-AWABrK5lMiKs0bm2HiotxAS5GQlmzGs3ofZ80j7FTAbEAoc6XsV0HtKs4ASFjUDHIxR6biSKXEUgB-2wGICFKQRSH7Mj7JQCIVBYztnkaumDWtiPubWdC6T75tvz43YZgbO-5bXhoibfmvSUXWVeT473tO9NT6fgLtu77qzb9-3imzVBOIb41oeWbwfTB4ARHD-QcD-RW_pgdNGXn6eRvztnbzfXr1V30-Hx7f3X5GKGUixAVGVSIRAqoBmyyhUhIKtlAkqmcMkTZVEAyqQhFkzd5inVVU5VkRYWpxFrO2dmud-3sZiAf9Mp4pK4re7KD10LlIlNK5WpE0x2KznrvqNFrZ1ajCi1AT4b1Uu8M68mwBqVHw2PsYhej8Y0PQ057NNQj1cYRBl1b83_BD2mOi2c</recordid><startdate>20131115</startdate><enddate>20131115</enddate><creator>Triki, Houria</creator><creator>Azzouzi, Faiçal</creator><creator>Grelu, Philippe</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131115</creationdate><title>Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms</title><author>Triki, Houria ; Azzouzi, Faiçal ; Grelu, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-850bccee60ed0cf5912e363f02567e5cc3fb0e32bec1f7f74cdbdeb258bc43cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Complex amplitude ansatz</topic><topic>Dispersions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear Schrödinger equation</topic><topic>Nonlinearity</topic><topic>Optical pulses</topic><topic>Schroedinger equation</topic><topic>Solitary wave solution</topic><topic>Solitary waves</topic><topic>Solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Triki, Houria</creatorcontrib><creatorcontrib>Azzouzi, Faiçal</creatorcontrib><creatorcontrib>Grelu, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Triki, Houria</au><au>Azzouzi, Faiçal</au><au>Grelu, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms</atitle><jtitle>Optics communications</jtitle><date>2013-11-15</date><risdate>2013</risdate><volume>309</volume><spage>71</spage><epage>79</epage><pages>71-79</pages><issn>0030-4018</issn><eissn>1873-0310</eissn><abstract>We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and dark solitary waves that allows us to obtain analytically different shapes of solitary wave solutions. Parametric conditions for the existence and uniqueness of such solitary waves are presented. The solutions comprise fundamental solitons, kink and anti-kink solitons, W-shaped, dipole, tripole, and fifth-order solitons. In addition, we found a new type of solitary wave solution that takes the shape of N, illustrating the potentially rich set of solitary wave solutions of the HNLS equation. Finally, the stability of the solutions is checked by direct numerical simulation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2013.06.039</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-4018
ispartof Optics communications, 2013-11, Vol.309, p.71-79
issn 0030-4018
1873-0310
language eng
recordid cdi_proquest_miscellaneous_1671566676
source Elsevier ScienceDirect Journals
subjects Complex amplitude ansatz
Dispersions
Mathematical analysis
Mathematical models
Nonlinear Schrödinger equation
Nonlinearity
Optical pulses
Schroedinger equation
Solitary wave solution
Solitary waves
Solitons
title Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipole%20solitary%20wave%20solutions%20of%20the%20higher-order%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20quintic%20non-Kerr%20terms&rft.jtitle=Optics%20communications&rft.au=Triki,%20Houria&rft.date=2013-11-15&rft.volume=309&rft.spage=71&rft.epage=79&rft.pages=71-79&rft.issn=0030-4018&rft.eissn=1873-0310&rft_id=info:doi/10.1016/j.optcom.2013.06.039&rft_dat=%3Cproquest_cross%3E1671566676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671566676&rft_id=info:pmid/&rft_els_id=S0030401813006032&rfr_iscdi=true