Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms
We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a com...
Gespeichert in:
Veröffentlicht in: | Optics communications 2013-11, Vol.309, p.71-79 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | |
container_start_page | 71 |
container_title | Optics communications |
container_volume | 309 |
creator | Triki, Houria Azzouzi, Faiçal Grelu, Philippe |
description | We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and dark solitary waves that allows us to obtain analytically different shapes of solitary wave solutions. Parametric conditions for the existence and uniqueness of such solitary waves are presented. The solutions comprise fundamental solitons, kink and anti-kink solitons, W-shaped, dipole, tripole, and fifth-order solitons. In addition, we found a new type of solitary wave solution that takes the shape of N, illustrating the potentially rich set of solitary wave solutions of the HNLS equation. Finally, the stability of the solutions is checked by direct numerical simulation. |
doi_str_mv | 10.1016/j.optcom.2013.06.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671566676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030401813006032</els_id><sourcerecordid>1671566676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-850bccee60ed0cf5912e363f02567e5cc3fb0e32bec1f7f74cdbdeb258bc43cd3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAxZeskkYx4mTbpAQ4k-AWABrK5lMiKs0bm2HiotxAS5GQlmzGs3ofZ80j7FTAbEAoc6XsV0HtKs4ASFjUDHIxR6biSKXEUgB-2wGICFKQRSH7Mj7JQCIVBYztnkaumDWtiPubWdC6T75tvz43YZgbO-5bXhoibfmvSUXWVeT473tO9NT6fgLtu77qzb9-3imzVBOIb41oeWbwfTB4ARHD-QcD-RW_pgdNGXn6eRvztnbzfXr1V30-Hx7f3X5GKGUixAVGVSIRAqoBmyyhUhIKtlAkqmcMkTZVEAyqQhFkzd5inVVU5VkRYWpxFrO2dmud-3sZiAf9Mp4pK4re7KD10LlIlNK5WpE0x2KznrvqNFrZ1ajCi1AT4b1Uu8M68mwBqVHw2PsYhej8Y0PQ057NNQj1cYRBl1b83_BD2mOi2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671566676</pqid></control><display><type>article</type><title>Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms</title><source>Elsevier ScienceDirect Journals</source><creator>Triki, Houria ; Azzouzi, Faiçal ; Grelu, Philippe</creator><creatorcontrib>Triki, Houria ; Azzouzi, Faiçal ; Grelu, Philippe</creatorcontrib><description>We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and dark solitary waves that allows us to obtain analytically different shapes of solitary wave solutions. Parametric conditions for the existence and uniqueness of such solitary waves are presented. The solutions comprise fundamental solitons, kink and anti-kink solitons, W-shaped, dipole, tripole, and fifth-order solitons. In addition, we found a new type of solitary wave solution that takes the shape of N, illustrating the potentially rich set of solitary wave solutions of the HNLS equation. Finally, the stability of the solutions is checked by direct numerical simulation.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2013.06.039</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Complex amplitude ansatz ; Dispersions ; Mathematical analysis ; Mathematical models ; Nonlinear Schrödinger equation ; Nonlinearity ; Optical pulses ; Schroedinger equation ; Solitary wave solution ; Solitary waves ; Solitons</subject><ispartof>Optics communications, 2013-11, Vol.309, p.71-79</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-850bccee60ed0cf5912e363f02567e5cc3fb0e32bec1f7f74cdbdeb258bc43cd3</citedby><cites>FETCH-LOGICAL-c339t-850bccee60ed0cf5912e363f02567e5cc3fb0e32bec1f7f74cdbdeb258bc43cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0030401813006032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Triki, Houria</creatorcontrib><creatorcontrib>Azzouzi, Faiçal</creatorcontrib><creatorcontrib>Grelu, Philippe</creatorcontrib><title>Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms</title><title>Optics communications</title><description>We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and dark solitary waves that allows us to obtain analytically different shapes of solitary wave solutions. Parametric conditions for the existence and uniqueness of such solitary waves are presented. The solutions comprise fundamental solitons, kink and anti-kink solitons, W-shaped, dipole, tripole, and fifth-order solitons. In addition, we found a new type of solitary wave solution that takes the shape of N, illustrating the potentially rich set of solitary wave solutions of the HNLS equation. Finally, the stability of the solutions is checked by direct numerical simulation.</description><subject>Complex amplitude ansatz</subject><subject>Dispersions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear Schrödinger equation</subject><subject>Nonlinearity</subject><subject>Optical pulses</subject><subject>Schroedinger equation</subject><subject>Solitary wave solution</subject><subject>Solitary waves</subject><subject>Solitons</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAxZeskkYx4mTbpAQ4k-AWABrK5lMiKs0bm2HiotxAS5GQlmzGs3ofZ80j7FTAbEAoc6XsV0HtKs4ASFjUDHIxR6biSKXEUgB-2wGICFKQRSH7Mj7JQCIVBYztnkaumDWtiPubWdC6T75tvz43YZgbO-5bXhoibfmvSUXWVeT473tO9NT6fgLtu77qzb9-3imzVBOIb41oeWbwfTB4ARHD-QcD-RW_pgdNGXn6eRvztnbzfXr1V30-Hx7f3X5GKGUixAVGVSIRAqoBmyyhUhIKtlAkqmcMkTZVEAyqQhFkzd5inVVU5VkRYWpxFrO2dmud-3sZiAf9Mp4pK4re7KD10LlIlNK5WpE0x2KznrvqNFrZ1ajCi1AT4b1Uu8M68mwBqVHw2PsYhej8Y0PQ057NNQj1cYRBl1b83_BD2mOi2c</recordid><startdate>20131115</startdate><enddate>20131115</enddate><creator>Triki, Houria</creator><creator>Azzouzi, Faiçal</creator><creator>Grelu, Philippe</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131115</creationdate><title>Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms</title><author>Triki, Houria ; Azzouzi, Faiçal ; Grelu, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-850bccee60ed0cf5912e363f02567e5cc3fb0e32bec1f7f74cdbdeb258bc43cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Complex amplitude ansatz</topic><topic>Dispersions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear Schrödinger equation</topic><topic>Nonlinearity</topic><topic>Optical pulses</topic><topic>Schroedinger equation</topic><topic>Solitary wave solution</topic><topic>Solitary waves</topic><topic>Solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Triki, Houria</creatorcontrib><creatorcontrib>Azzouzi, Faiçal</creatorcontrib><creatorcontrib>Grelu, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Triki, Houria</au><au>Azzouzi, Faiçal</au><au>Grelu, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms</atitle><jtitle>Optics communications</jtitle><date>2013-11-15</date><risdate>2013</risdate><volume>309</volume><spage>71</spage><epage>79</epage><pages>71-79</pages><issn>0030-4018</issn><eissn>1873-0310</eissn><abstract>We consider a high-order nonlinear Schrödinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and dark solitary waves that allows us to obtain analytically different shapes of solitary wave solutions. Parametric conditions for the existence and uniqueness of such solitary waves are presented. The solutions comprise fundamental solitons, kink and anti-kink solitons, W-shaped, dipole, tripole, and fifth-order solitons. In addition, we found a new type of solitary wave solution that takes the shape of N, illustrating the potentially rich set of solitary wave solutions of the HNLS equation. Finally, the stability of the solutions is checked by direct numerical simulation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2013.06.039</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4018 |
ispartof | Optics communications, 2013-11, Vol.309, p.71-79 |
issn | 0030-4018 1873-0310 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671566676 |
source | Elsevier ScienceDirect Journals |
subjects | Complex amplitude ansatz Dispersions Mathematical analysis Mathematical models Nonlinear Schrödinger equation Nonlinearity Optical pulses Schroedinger equation Solitary wave solution Solitary waves Solitons |
title | Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipole%20solitary%20wave%20solutions%20of%20the%20higher-order%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20quintic%20non-Kerr%20terms&rft.jtitle=Optics%20communications&rft.au=Triki,%20Houria&rft.date=2013-11-15&rft.volume=309&rft.spage=71&rft.epage=79&rft.pages=71-79&rft.issn=0030-4018&rft.eissn=1873-0310&rft_id=info:doi/10.1016/j.optcom.2013.06.039&rft_dat=%3Cproquest_cross%3E1671566676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671566676&rft_id=info:pmid/&rft_els_id=S0030401813006032&rfr_iscdi=true |