A power of an entire function sharing one value with its derivative
In this paper, we investigate uniqueness problems of entire functions that share one value with one of their derivatives. Let f be a non-constant entire function, n and k be positive integers. If f n and ( f n ) ( k ) share 1 CM and n ≥ k + 1 , then f n = ( f n ) ( k ) , and f assumes the form f ( z...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2010-10, Vol.60 (7), p.2153-2160 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate uniqueness problems of entire functions that share one value with one of their derivatives. Let
f
be a non-constant entire function,
n
and
k
be positive integers. If
f
n
and
(
f
n
)
(
k
)
share 1 CM and
n
≥
k
+
1
, then
f
n
=
(
f
n
)
(
k
)
, and
f
assumes the form
f
(
z
)
=
c
e
λ
n
z
, where
c
is a non-zero constant and
λ
k
=
1
. This result shows that a conjecture given by Brück is true when
F
=
f
n
, where
n
≥
2
is an integer. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2010.08.001 |