A power of an entire function sharing one value with its derivative

In this paper, we investigate uniqueness problems of entire functions that share one value with one of their derivatives. Let f be a non-constant entire function, n and k be positive integers. If f n and ( f n ) ( k ) share 1 CM and n ≥ k + 1 , then f n = ( f n ) ( k ) , and f assumes the form f ( z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2010-10, Vol.60 (7), p.2153-2160
Hauptverfasser: Zhang, Ji-Long, Yang, Lian-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate uniqueness problems of entire functions that share one value with one of their derivatives. Let f be a non-constant entire function, n and k be positive integers. If f n and ( f n ) ( k ) share 1 CM and n ≥ k + 1 , then f n = ( f n ) ( k ) , and f assumes the form f ( z ) = c e λ n z , where c is a non-zero constant and λ k = 1 . This result shows that a conjecture given by Brück is true when F = f n , where n ≥ 2 is an integer.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2010.08.001