Nongeminate and Geminate Recombination in PTB7:PCBM Solar Cells
A combination of transient photovoltage (TPV), voltage dependent charge extraction (CE), and time delayed collection field (TDCF) measurements is applied to poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl] [3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl] thieno[3,4‐b]thiophenediyl]]...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2014-03, Vol.24 (9), p.1306-1311 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A combination of transient photovoltage (TPV), voltage dependent charge extraction (CE), and time delayed collection field (TDCF) measurements is applied to poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl] [3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl] thieno[3,4‐b]thiophenediyl]] (PTB7):[6,6]‐phenyl‐C71‐butyric acid (PC71BM) bulk heterojunction solar cells to analyze the limitations of photovoltaic performance. Devices are processed from pure chlorobenzene (CB) solution and a subset is optimized with 1,8‐diiodooctane (DIO) as co‐solvent. The dramatic changes in device performance are discussed with respect to the dominating loss processes. While in the devices processed from CB solution severe geminate and nongeminate recombination is observed, the use of DIO facilitates efficient polaron pair dissociation and minimizes geminate recombination. Thus, from the determined charge carrier decay rate under open circuit conditions and the voltage dependent charge carrier densities n(V), the nongeminate loss current Jloss of the samples with DIO alone enables the reconstruction of the current/voltage (j/V) characteristics across the whole operational voltage range. Geminate and nongeminate losses are considered to describe the j/V response of cells prepared without additive, but lead to a clearly overestimated device performance. The deviation between measured and reconstructed j/V characteristics is attributed to trapped charges in isolated domains of pure fullerene phases.
In bulk heterojunction solar cells based on PTB7:PC71BM, the solvent additive 1,8‐diiodooctane (DIO) leads to dramatic improvement of the device performance. By studying the recombination dynamics, the measured j/V characteristics are reconstructed across the whole operational voltage range. The apparent deviation in case of the device processed without additive is discussed with respect to trapped charges in isolated fullerene domains. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.201302134 |