Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime

The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on p z orbital constructs the device Hamiltonian. GNRs of different edge geome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2008-09, Vol.7 (3), p.407-410
Hauptverfasser: Golizadeh-Mojarad, Roksana, Zainuddin, Abu Naser M., Klimeck, Gerhard, Datta, Supriyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 3
container_start_page 407
container_title Journal of computational electronics
container_volume 7
creator Golizadeh-Mojarad, Roksana
Zainuddin, Abu Naser M.
Klimeck, Gerhard
Datta, Supriyo
description The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on p z orbital constructs the device Hamiltonian. GNRs of different edge geometries (Zigzag and Armchair) are considered. The magnetic field is included in both the channels and contact through Peierls substitution. Efficient algorithms for calculating the surface Green function are used to reduce computation time to enable simulating realistically large dimensions comparable to those used in experiments. Hall resistance calculations exactly reproduce the quantum Hall plateaus observed in the experiments. Use of large dimensions in the simulation is crucial in order to capture the quantum Hall effect within experimentally magnetic fields relevant 10–20 T.
doi_str_mv 10.1007/s10825-008-0190-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671564216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918265133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ace35c3c5570bc8978c232b72385a4db83b90c5fd016c89d108f81599666a2e43</originalsourceid><addsrcrecordid>eNp1kcFqGzEQhpfSQp20D9CboARyUTKSrJV0NCFxC4Zc2rPQytpYZleypV1wbnmN3PIsfZQ-SbXYJBDoaQb-b35m5q-qbwSuCIC4zgQk5RhAYiAK8OFDNSNcUCwJEx-nvlZYAuWfq7OctwAU6JzMqn4xxN7nwVsUYsBuP_rON8mPPVom58Lfp-eM2jHYwceAsu_HzkxtRrH987JMZrdxwaFgQsTJN82k-ICGjUP70YSh-GxM16HkHnzvvlSfWtNl9_VUz6vfd7e_bn7g1f3y581ihS0TasDGOsYts5wLaKxUQlrKaCMok9zM141kjQLL2zWQusjrcnsrCVeqrmtD3ZydV5dH312K-9HlQZcbres6E1wcsya1KA-ZU1IX9Ps7dBvHFMp2mioiac0JY4UiR8qmmHNyrd4l35v0qAnoKQB9DECXAPQUgD6UmYuTs8nWdG0ywfr8OkhBMEUFFI4euVyk8ODS2wb_N_8Hg1GYLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918265133</pqid></control><display><type>article</type><title>Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Golizadeh-Mojarad, Roksana ; Zainuddin, Abu Naser M. ; Klimeck, Gerhard ; Datta, Supriyo</creator><creatorcontrib>Golizadeh-Mojarad, Roksana ; Zainuddin, Abu Naser M. ; Klimeck, Gerhard ; Datta, Supriyo</creatorcontrib><description>The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on p z orbital constructs the device Hamiltonian. GNRs of different edge geometries (Zigzag and Armchair) are considered. The magnetic field is included in both the channels and contact through Peierls substitution. Efficient algorithms for calculating the surface Green function are used to reduce computation time to enable simulating realistically large dimensions comparable to those used in experiments. Hall resistance calculations exactly reproduce the quantum Hall plateaus observed in the experiments. Use of large dimensions in the simulation is crucial in order to capture the quantum Hall effect within experimentally magnetic fields relevant 10–20 T.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-008-0190-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computer simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electrical Engineering ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Engineering ; Exact sciences and technology ; Graphene ; Green's functions ; Halls ; Hamiltonian functions ; Magnetic fields ; Materials science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mechanical Engineering ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Optical and Electronic Materials ; Other topics in nanoscale materials and structures ; Physics ; Quantum Hall effect ; Quantum hall effect (including fractional) ; Quantum transport ; Ribbons ; Simulation ; Theoretical</subject><ispartof>Journal of computational electronics, 2008-09, Vol.7 (3), p.407-410</ispartof><rights>Springer Science+Business Media LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media LLC 2008.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ace35c3c5570bc8978c232b72385a4db83b90c5fd016c89d108f81599666a2e43</citedby><cites>FETCH-LOGICAL-c379t-ace35c3c5570bc8978c232b72385a4db83b90c5fd016c89d108f81599666a2e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-008-0190-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918265133?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,21388,23930,23931,25140,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20739270$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Golizadeh-Mojarad, Roksana</creatorcontrib><creatorcontrib>Zainuddin, Abu Naser M.</creatorcontrib><creatorcontrib>Klimeck, Gerhard</creatorcontrib><creatorcontrib>Datta, Supriyo</creatorcontrib><title>Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on p z orbital constructs the device Hamiltonian. GNRs of different edge geometries (Zigzag and Armchair) are considered. The magnetic field is included in both the channels and contact through Peierls substitution. Efficient algorithms for calculating the surface Green function are used to reduce computation time to enable simulating realistically large dimensions comparable to those used in experiments. Hall resistance calculations exactly reproduce the quantum Hall plateaus observed in the experiments. Use of large dimensions in the simulation is crucial in order to capture the quantum Hall effect within experimentally magnetic fields relevant 10–20 T.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrical Engineering</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Graphene</subject><subject>Green's functions</subject><subject>Halls</subject><subject>Hamiltonian functions</subject><subject>Magnetic fields</subject><subject>Materials science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Quantum Hall effect</subject><subject>Quantum hall effect (including fractional)</subject><subject>Quantum transport</subject><subject>Ribbons</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFqGzEQhpfSQp20D9CboARyUTKSrJV0NCFxC4Zc2rPQytpYZleypV1wbnmN3PIsfZQ-SbXYJBDoaQb-b35m5q-qbwSuCIC4zgQk5RhAYiAK8OFDNSNcUCwJEx-nvlZYAuWfq7OctwAU6JzMqn4xxN7nwVsUYsBuP_rON8mPPVom58Lfp-eM2jHYwceAsu_HzkxtRrH987JMZrdxwaFgQsTJN82k-ICGjUP70YSh-GxM16HkHnzvvlSfWtNl9_VUz6vfd7e_bn7g1f3y581ihS0TasDGOsYts5wLaKxUQlrKaCMok9zM141kjQLL2zWQusjrcnsrCVeqrmtD3ZydV5dH312K-9HlQZcbres6E1wcsya1KA-ZU1IX9Ps7dBvHFMp2mioiac0JY4UiR8qmmHNyrd4l35v0qAnoKQB9DECXAPQUgD6UmYuTs8nWdG0ywfr8OkhBMEUFFI4euVyk8ODS2wb_N_8Hg1GYLQ</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Golizadeh-Mojarad, Roksana</creator><creator>Zainuddin, Abu Naser M.</creator><creator>Klimeck, Gerhard</creator><creator>Datta, Supriyo</creator><general>Springer US</general><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime</title><author>Golizadeh-Mojarad, Roksana ; Zainuddin, Abu Naser M. ; Klimeck, Gerhard ; Datta, Supriyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ace35c3c5570bc8978c232b72385a4db83b90c5fd016c89d108f81599666a2e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrical Engineering</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Graphene</topic><topic>Green's functions</topic><topic>Halls</topic><topic>Hamiltonian functions</topic><topic>Magnetic fields</topic><topic>Materials science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Quantum Hall effect</topic><topic>Quantum hall effect (including fractional)</topic><topic>Quantum transport</topic><topic>Ribbons</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golizadeh-Mojarad, Roksana</creatorcontrib><creatorcontrib>Zainuddin, Abu Naser M.</creatorcontrib><creatorcontrib>Klimeck, Gerhard</creatorcontrib><creatorcontrib>Datta, Supriyo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golizadeh-Mojarad, Roksana</au><au>Zainuddin, Abu Naser M.</au><au>Klimeck, Gerhard</au><au>Datta, Supriyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>7</volume><issue>3</issue><spage>407</spage><epage>410</epage><pages>407-410</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on p z orbital constructs the device Hamiltonian. GNRs of different edge geometries (Zigzag and Armchair) are considered. The magnetic field is included in both the channels and contact through Peierls substitution. Efficient algorithms for calculating the surface Green function are used to reduce computation time to enable simulating realistically large dimensions comparable to those used in experiments. Hall resistance calculations exactly reproduce the quantum Hall plateaus observed in the experiments. Use of large dimensions in the simulation is crucial in order to capture the quantum Hall effect within experimentally magnetic fields relevant 10–20 T.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-008-0190-x</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2008-09, Vol.7 (3), p.407-410
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_miscellaneous_1671564216
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Computer simulation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electrical Engineering
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in interface structures
Engineering
Exact sciences and technology
Graphene
Green's functions
Halls
Hamiltonian functions
Magnetic fields
Materials science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Mechanical Engineering
Nanomaterials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Optical and Electronic Materials
Other topics in nanoscale materials and structures
Physics
Quantum Hall effect
Quantum hall effect (including fractional)
Quantum transport
Ribbons
Simulation
Theoretical
title Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20non-equilibrium%20Green%E2%80%99s%20function%20simulations%20of%C2%A0Graphene%20nano-ribbons%20in%20the%20quantum%20hall%20regime&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Golizadeh-Mojarad,%20Roksana&rft.date=2008-09-01&rft.volume=7&rft.issue=3&rft.spage=407&rft.epage=410&rft.pages=407-410&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-008-0190-x&rft_dat=%3Cproquest_cross%3E2918265133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918265133&rft_id=info:pmid/&rfr_iscdi=true