Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime
The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on p z orbital constructs the device Hamiltonian. GNRs of different edge geome...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2008-09, Vol.7 (3), p.407-410 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | 3 |
container_start_page | 407 |
container_title | Journal of computational electronics |
container_volume | 7 |
creator | Golizadeh-Mojarad, Roksana Zainuddin, Abu Naser M. Klimeck, Gerhard Datta, Supriyo |
description | The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on
p
z
orbital constructs the device Hamiltonian. GNRs of different edge geometries (Zigzag and Armchair) are considered. The magnetic field is included in both the channels and contact through Peierls substitution. Efficient algorithms for calculating the surface Green function are used to reduce computation time to enable simulating realistically large dimensions comparable to those used in experiments. Hall resistance calculations exactly reproduce the quantum Hall plateaus observed in the experiments. Use of large dimensions in the simulation is crucial in order to capture the quantum Hall effect within experimentally magnetic fields relevant 10–20 T. |
doi_str_mv | 10.1007/s10825-008-0190-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671564216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918265133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ace35c3c5570bc8978c232b72385a4db83b90c5fd016c89d108f81599666a2e43</originalsourceid><addsrcrecordid>eNp1kcFqGzEQhpfSQp20D9CboARyUTKSrJV0NCFxC4Zc2rPQytpYZleypV1wbnmN3PIsfZQ-SbXYJBDoaQb-b35m5q-qbwSuCIC4zgQk5RhAYiAK8OFDNSNcUCwJEx-nvlZYAuWfq7OctwAU6JzMqn4xxN7nwVsUYsBuP_rON8mPPVom58Lfp-eM2jHYwceAsu_HzkxtRrH987JMZrdxwaFgQsTJN82k-ICGjUP70YSh-GxM16HkHnzvvlSfWtNl9_VUz6vfd7e_bn7g1f3y581ihS0TasDGOsYts5wLaKxUQlrKaCMok9zM141kjQLL2zWQusjrcnsrCVeqrmtD3ZydV5dH312K-9HlQZcbres6E1wcsya1KA-ZU1IX9Ps7dBvHFMp2mioiac0JY4UiR8qmmHNyrd4l35v0qAnoKQB9DECXAPQUgD6UmYuTs8nWdG0ywfr8OkhBMEUFFI4euVyk8ODS2wb_N_8Hg1GYLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918265133</pqid></control><display><type>article</type><title>Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Golizadeh-Mojarad, Roksana ; Zainuddin, Abu Naser M. ; Klimeck, Gerhard ; Datta, Supriyo</creator><creatorcontrib>Golizadeh-Mojarad, Roksana ; Zainuddin, Abu Naser M. ; Klimeck, Gerhard ; Datta, Supriyo</creatorcontrib><description>The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on
p
z
orbital constructs the device Hamiltonian. GNRs of different edge geometries (Zigzag and Armchair) are considered. The magnetic field is included in both the channels and contact through Peierls substitution. Efficient algorithms for calculating the surface Green function are used to reduce computation time to enable simulating realistically large dimensions comparable to those used in experiments. Hall resistance calculations exactly reproduce the quantum Hall plateaus observed in the experiments. Use of large dimensions in the simulation is crucial in order to capture the quantum Hall effect within experimentally magnetic fields relevant 10–20 T.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-008-0190-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computer simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electrical Engineering ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Engineering ; Exact sciences and technology ; Graphene ; Green's functions ; Halls ; Hamiltonian functions ; Magnetic fields ; Materials science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mechanical Engineering ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Optical and Electronic Materials ; Other topics in nanoscale materials and structures ; Physics ; Quantum Hall effect ; Quantum hall effect (including fractional) ; Quantum transport ; Ribbons ; Simulation ; Theoretical</subject><ispartof>Journal of computational electronics, 2008-09, Vol.7 (3), p.407-410</ispartof><rights>Springer Science+Business Media LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media LLC 2008.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ace35c3c5570bc8978c232b72385a4db83b90c5fd016c89d108f81599666a2e43</citedby><cites>FETCH-LOGICAL-c379t-ace35c3c5570bc8978c232b72385a4db83b90c5fd016c89d108f81599666a2e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-008-0190-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918265133?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,21388,23930,23931,25140,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20739270$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Golizadeh-Mojarad, Roksana</creatorcontrib><creatorcontrib>Zainuddin, Abu Naser M.</creatorcontrib><creatorcontrib>Klimeck, Gerhard</creatorcontrib><creatorcontrib>Datta, Supriyo</creatorcontrib><title>Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on
p
z
orbital constructs the device Hamiltonian. GNRs of different edge geometries (Zigzag and Armchair) are considered. The magnetic field is included in both the channels and contact through Peierls substitution. Efficient algorithms for calculating the surface Green function are used to reduce computation time to enable simulating realistically large dimensions comparable to those used in experiments. Hall resistance calculations exactly reproduce the quantum Hall plateaus observed in the experiments. Use of large dimensions in the simulation is crucial in order to capture the quantum Hall effect within experimentally magnetic fields relevant 10–20 T.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrical Engineering</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Graphene</subject><subject>Green's functions</subject><subject>Halls</subject><subject>Hamiltonian functions</subject><subject>Magnetic fields</subject><subject>Materials science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Quantum Hall effect</subject><subject>Quantum hall effect (including fractional)</subject><subject>Quantum transport</subject><subject>Ribbons</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFqGzEQhpfSQp20D9CboARyUTKSrJV0NCFxC4Zc2rPQytpYZleypV1wbnmN3PIsfZQ-SbXYJBDoaQb-b35m5q-qbwSuCIC4zgQk5RhAYiAK8OFDNSNcUCwJEx-nvlZYAuWfq7OctwAU6JzMqn4xxN7nwVsUYsBuP_rON8mPPVom58Lfp-eM2jHYwceAsu_HzkxtRrH987JMZrdxwaFgQsTJN82k-ICGjUP70YSh-GxM16HkHnzvvlSfWtNl9_VUz6vfd7e_bn7g1f3y581ihS0TasDGOsYts5wLaKxUQlrKaCMok9zM141kjQLL2zWQusjrcnsrCVeqrmtD3ZydV5dH312K-9HlQZcbres6E1wcsya1KA-ZU1IX9Ps7dBvHFMp2mioiac0JY4UiR8qmmHNyrd4l35v0qAnoKQB9DECXAPQUgD6UmYuTs8nWdG0ywfr8OkhBMEUFFI4euVyk8ODS2wb_N_8Hg1GYLQ</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Golizadeh-Mojarad, Roksana</creator><creator>Zainuddin, Abu Naser M.</creator><creator>Klimeck, Gerhard</creator><creator>Datta, Supriyo</creator><general>Springer US</general><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime</title><author>Golizadeh-Mojarad, Roksana ; Zainuddin, Abu Naser M. ; Klimeck, Gerhard ; Datta, Supriyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ace35c3c5570bc8978c232b72385a4db83b90c5fd016c89d108f81599666a2e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrical Engineering</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Graphene</topic><topic>Green's functions</topic><topic>Halls</topic><topic>Hamiltonian functions</topic><topic>Magnetic fields</topic><topic>Materials science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Quantum Hall effect</topic><topic>Quantum hall effect (including fractional)</topic><topic>Quantum transport</topic><topic>Ribbons</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golizadeh-Mojarad, Roksana</creatorcontrib><creatorcontrib>Zainuddin, Abu Naser M.</creatorcontrib><creatorcontrib>Klimeck, Gerhard</creatorcontrib><creatorcontrib>Datta, Supriyo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golizadeh-Mojarad, Roksana</au><au>Zainuddin, Abu Naser M.</au><au>Klimeck, Gerhard</au><au>Datta, Supriyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>7</volume><issue>3</issue><spage>407</spage><epage>410</epage><pages>407-410</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>The quantum Hall effect in Graphene nano-ribbons (GNR) is investigated with the non-equilibrium Green’s function (NEGF) based quantum transport model in the ballistic regime. The nearest neighbor tight-binding model based on
p
z
orbital constructs the device Hamiltonian. GNRs of different edge geometries (Zigzag and Armchair) are considered. The magnetic field is included in both the channels and contact through Peierls substitution. Efficient algorithms for calculating the surface Green function are used to reduce computation time to enable simulating realistically large dimensions comparable to those used in experiments. Hall resistance calculations exactly reproduce the quantum Hall plateaus observed in the experiments. Use of large dimensions in the simulation is crucial in order to capture the quantum Hall effect within experimentally magnetic fields relevant 10–20 T.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-008-0190-x</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2008-09, Vol.7 (3), p.407-410 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671564216 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Computer simulation Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electrical Engineering Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in interface structures Engineering Exact sciences and technology Graphene Green's functions Halls Hamiltonian functions Magnetic fields Materials science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Mechanical Engineering Nanomaterials Nanoscale materials and structures: fabrication and characterization Nanostructure Optical and Electronic Materials Other topics in nanoscale materials and structures Physics Quantum Hall effect Quantum hall effect (including fractional) Quantum transport Ribbons Simulation Theoretical |
title | Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20non-equilibrium%20Green%E2%80%99s%20function%20simulations%20of%C2%A0Graphene%20nano-ribbons%20in%20the%20quantum%20hall%20regime&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Golizadeh-Mojarad,%20Roksana&rft.date=2008-09-01&rft.volume=7&rft.issue=3&rft.spage=407&rft.epage=410&rft.pages=407-410&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-008-0190-x&rft_dat=%3Cproquest_cross%3E2918265133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918265133&rft_id=info:pmid/&rfr_iscdi=true |